Research Statement
Tao Hong From Large-Scale Computations to Reliable and Efficient Al: Advancing Imaging Science

I aim to develop provable and efficient computational methods for reliable Al-driven imaging science, enabling
fast, high-quality imaging that increases patient throughput and accelerates scientific discovery.

Imaging is essential for advancing human health and scientific discovery by revealing the unseen. For ex-
ample, biomedical imaging transforms invisible tissue and physiological processes into visual and quantitative
information, enabling earlier disease detection, guiding life-saving treatments, reducing unnecessary proce-
dures and costs, and improving long-term patient outcomes—thereby delivering broad benefits to healthcare
and society. Biological imaging plays a complementary role at the cellular and molecular levels, revealing
processes such as protein dynamics, neuronal activity, and cell-tissue interactions that underpin health and
disease. High-dimensional imaging is essential because biomedical systems are volumetric and dynamic,
while biological imaging reveals structural and molecular details from molecules to tissues. Due to factors
such as hardware cost, radiation dose, patient comfort, and physical limitations, among others, the acquired
data are often incomplete and noisy, making accurate, robust, and trustworthy reconstruction challenging.
Moreover, high-dimensional imaging also poses challenges in computation and memory. Fast computa-
tional methods are critical for time-sensitive care, such as emergency diagnosis and surgical guidance, and
for reducing costs to enable use in resource-limited settings, thereby improving accessibility and impact.

My interdisciplinary background and research approach (see Fig. 1), integrating computational imag-
ing, scientific computing, large-scale optimization, and trustworthy Al, places me in a unique position to
advance scalable and reliable Al-driven methods for next-generation biomedical and biological imaging.
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Figure 1: Research vision: large-scale optimization — provable Al — trustworthy, efficient Al.

1 Prior Research Experience

My training in large-scale optimization, scientific computing, Al, and theory equips me to tackle computational
challenges in large-scale imaging and to develop efficient, reliable Al models for imaging science. Below, |
highlight examples of my current and past PhD research and their real-world impact.

1.1 Large-Scale Computations and Reliable Al Models in Imaging Science (Current)

| have led several impactful projects focused on advancing image reconstruction quality and efficiency through
the integration of Al-driven priors with provable computational methods. A central challenge is building com-
putational methods that are efficient, theoretically sound, and capable of employing reliable Al-driven priors
for large-scale imaging under indirect, noisy, and undersampled measurements. My past research tackles
three problems central to this challenge. P1.How can we improve the convergence speed of image re-
construction in the plug-and-play (PnP) framework? P2.How can we accelerate the convergence rates of
gradient-driven denoisers based reconstruction beyond first-order methods? P3. How can we adopt random-
ized algorithms to accelerate variational image reconstruction?

In my most recent work [1], | addressed P1 by introducing preconditioning techniques for PnP com-
pressed sensing (CS) MRI reconstruction. Modern MRI scanners use multi-coil arrays, and coil sensitiv-
ity maps vary between scans, which makes it difficult for standard end-to-end Al models to generalize; in
contrast, PnP methods with learned denoisers naturally adapt to different scans. However, PnP methods
converge slowly, limiting their applicability to large-scale problems. | developed effective preconditioners with
rigorous convergence analysis, demonstrating that preconditioning can be systematically integrated into the
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PnP framework, enabling both faster convergence and provable guarantees. This work established the first
provable preconditioned PnP scheme, reducing reconstruction time, improving image quality, and opening
principled avenues to integrate preconditioning into Al-driven imaging and other large-scale inverse prob-
lems.

My work [2] considered P2 by incorporating curvature information. A key challenge in PnP is develop-
ing efficient, convergent algorithms whose assumptions are easily satisfied by trained convolutional neural
network (CNN) denoisers. Gradient-driven denoisers (GDDs) overcome this limitation by requiring only Lips-
chitz continuity of the denoiser, while matching PnP performance and yielding a differentiable but nonconvex
minimization problem. However, first-order methods converge slowly in practice, especially for ill-conditioned
CS-MRI problems. Leveraging the fact that MRI images are complex-valued, | developed a complex second-
order method by proposing a way to estimate a Hermitian positive-definite Hessian matrix in nonconvex
settings. This approach attains much faster convergence than competing methods while retaining rigor-
ous guarantees under only a Lipschitz-continuity assumption on GDDs. This work introduced a second-order
framework for Al-driven reconstruction with provable convergence and motivated my recent work [3] on large-
scale problems with learned priors—a direction | will continue to pursue.

My work on randomized algorithms [4] addressed P3 by computing a preconditioner to accelerate vari-
ational image reconstruction using the Nystrém approximation (NA). A key challenge in designing precondi-
tioners for image reconstruction is twofold: the forward model is operator-based, and the preconditioner must
be computed on-the-fly. | observed that the NA provides a promising preconditioner and demonstrated how
it can be incorporated to accelerate existing algorithms for image reconstruction with impulsive or Gaussian
noise. By leveraging modern GPU platforms, | further showed how to compute the preconditioner on-the-fly.
The results demonstrated that my approach reduced reconstruction time from one hour to one minute.

1.2 Efficient Methods in Imaging Science and Scientific Computing (PhD Research)

My PhD research focused on developing efficient algorithms for large-scale problems, e.g., high-order meth-
ods for linear and nonlinear inverse problems [5, 8], multigrid-based solvers for diffraction tomography [9],
hybrid approaches that combined multigrid optimization with sequential subspace optimization to balance
global exploration with local refinement [10], and acceleration methods [6, 7] etc. My research addresses
the following question: How can we develop efficient, theoretically grounded algorithms to accelerate conver-
gence, improve robustness, and solve large-scale inverse problems?

My work in [5] addressed 3D optical diffraction tomography (ODT) reconstruction—a large-scale, nonlin-
ear problem that is central to computational microscopy. A key challenge in 3D ODT arises from the non-
linear forward model required for high refractive index objects, which renders the problem highly nonconvex
and both computationally and memory intensive. To mitigate the challenge, | developed a mini-batch quasi-
Newton proximal algorithm that combines stochastic gradient updates with curvature information estimated
from noisy gradients. This method converges faster than stochastic first-order approaches in both iterations
and wall time, while preserving rigorous convergence guarantees. Validation on 3D real data further demon-
strated its advantages. This work pushed high-order methods beyond theory, demonstrating practical impact
in real-world applications and laying the foundation for part of my current research.

My NLAA paper [6] generalized Nesterov’s scheme (NS) to accelerate iterative methods (IMs) for linear
equations Ax = f, where A is a sparse, large-scale, and ill-conditioned matrix [14, 17]. Compared with classic
Krylov subspace methods, NS requires more iterations but offers simpler implementation, lower memory
usage, and similar per-iteration costs as the corresponding unaccelerated IMs. While NS has been applied
to gradient descent [15], proximal gradient descent [16], and Newton methods [18], its generalization to IMs
remains unresolved. | showed that NS can indeed accelerate IMs, derived a closed-form solution for the
optimal momentum, and identified a class of IMs where NS cannot be applied. This work demonstrated the
feasibility of generalized acceleration methods for IMs, while advancing them to tackle nonlinear problems
remains an open challenge that | plan to pursue further.



My other PhD research reflects my problem-solving philosophy: once you truly understand a problem, you
can solve it. For example, in optimizing sensing matrices for robust CS systems [11], | found that optimized
sensing matrices performed worse than random sampling. | traced this issue to sparse representation errors
(SREs), which naturally occur in practical signals. By accounting for SREs, | developed an effective strategy
that outperformed random sampling and opened new perspectives for optimizing MRI sampling trajectories.

Future Research

With training in prestigious research groups, | developed an interdisciplinary background bridging theory,
computation, Al, and imaging science. Ready to hit the ground running as an assistant professor, | aim to
advance my research through the following unique Directions.

D1. Designing Provable Al-Driven Methods for Large-Scale Imaging Science. Biomedical imaging prob-
lems are often high-dimensional, involving 3D images, 4D dynamic images, and even 5D images that in-
corporate space, time, and spectral or parametric dimensions. Al-driven priors encode learned structure
and can improve fidelity beyond classical methods, yet many applications lack high-quality training data, ne-
cessitating realistic simulations, which | plan to pursue in future work. Since these reconstructions inform
clinical and scientific decisions, principled theory and guarantees are essential to ensure safety and reliabil-
ity. My goal is to develop provable computational methods for Al-driven inverse problems, enabling efficient
optimization and learning, as exemplified in [1-3, 5]. Leveraging my interdisciplinary background, | aim to
address large-scale real-world imaging problems—such as MRI, photoacoustic computed tomography, and
Fourier ptychography—by developing methods that enhance healthcare, accelerate scientific discovery, and,
in parallel, contribute open-source software that empowers the research community.

D2. Understanding Uncertainty in Al-Driven Methods to Enable Reliable Deployment. Clinicians rely on
reconstructions for disease diagnosis. Therefore, we not only need guarantees on the reconstruction steps,
but also must evaluate whether Al-driven priors can be trusted. Studying uncertainty in Al-driven methods is
essential for reliable deployment. | plan to study uncertainty in biomedical applications (e.g., reconstruction
and medical foundation models) using conformal inference methods (such as conformal prediction and con-
formal risk control), while also exploring complementary approaches to robust and trustworthy Al. Beyond
supporting the development of reliable and safe Al models, a deeper understanding of uncertainty can shed
light on fundamental challenges in Al-driven methods, including distribution shifts, bias, data corruption and
adversarial attacks, hallucinations, and robustness—directions | also intend to explore.

D3. Enhancing Energy Efficiency of Al-Driven Methods. Given the large size of modern deep neural net-
works (DNNSs), efficiency is essential for faster performance, reduced energy consumption, and sustainable
(green) Al. This need is particularly critical for deployment on portable devices with limited power, memory,
and computation. Parameter quantization provides a promising strategy for compressing networks and re-
ducing computation [19]. Since matrix—vector multiplication (MVM)—a fundamental DNN operation—admits
infinitely many realizations that affect quantization error (QE) [20], | plan to investigate realizations that min-
imize QE, building on my prior work with state-space methods in digital filters [12, 13] and earlier hardware
research experience. Notably, state-space methods have also shown promise in time-sequence Al models
[21, 22]. More broadly, my goal is to establish theoretical frameworks that guide efficient realizations across
neural networks and to collaborate with hardware experts to enable deployment on edge devices, smart-
phones, and embedded systems. This direction forms a key pillar of my broader vision: developing efficient,
robust, and trustworthy Al-driven methods for large-scale inverse problems.

Conclusion: | plan to lead a research program that not only advances the theory of computational meth-
ods and Al but also delivers real-world impact—improving imaging to advance healthcare and accelerating
scientific discovery, while enabling trustworthy Al across science and engineering.
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