Generalizing Nesterov's Scheme and Magical High-order Methods

Tao Hong

working with Prof. Jeffrey A. Fessler and Prof. Luis Hernandez Garcia

fMRI Lab & EECS University of Michigan, Ann Arbor Email: tahong@umich.edu

Jeff

Outline

Generalizing Nesterov's Scheme

Motivation General Nest. Acc. Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation Our Suggestion Numerical Results

Generalizing Nesterov's Scheme Motivation

General Nest. Acc. Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation Our Suggestion Numerical Results

 $\min_{\boldsymbol{x} \in \mathbb{R}^{N}} f(\boldsymbol{x}): f \text{ smooth & convex & } L \text{ Lip. Const.}$

 $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x}): f \text{ smooth & convex & } L \text{ Lip. Const.}$

Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}_k)$

 $\min_{\boldsymbol{x} \in \mathbb{R}^N} f(\boldsymbol{x}): f \text{ smooth & convex & L Lip. Const.}$

Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \mathbf{x}_{x+1} = \mathbf{x}_k - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$

Nest. Acc.
$$O(\frac{1}{k^2}) \mathbf{x}_{k+1} = \mathbf{v}_k - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{v}_k), \mathbf{v}_{k+1} = t_k^1 \mathbf{x}_k + t_k^2 \mathbf{x}_{k+1}$$

 $\min_{\boldsymbol{x} \in \mathbb{R}^N} f(\boldsymbol{x}): f \text{ smooth & convex & L Lip. Const.}$

Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$

Nest. Acc.
$$O(\frac{1}{k^2}) \mathbf{x}_{k+1} = \mathbf{v}_k - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{v}_k), \mathbf{v}_{k+1} = t_k^1 \mathbf{x}_k + t_k^2 \mathbf{x}_{k+1}$$

 \rightarrow Cubic reg. (Nest. 06 MP)

 $\min_{\boldsymbol{x}\in\mathbb{R}^{N}}f(\boldsymbol{x}): f \text{ smooth & convex & L Lip. Const.}$

Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \mathbf{x}_{x+1} = \mathbf{x}_k - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$

Nest. Acc.
$$O(\frac{1}{k^2}) \mathbf{x}_{k+1} = \mathbf{v}_k - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{v}_k), \mathbf{v}_{k+1} = t_k^1 \mathbf{x}_k + t_k^2 \mathbf{x}_{k+1}$$

 \rightarrow Cubic reg. (Nest. 06 MP) \rightarrow Acc. version (Nest. 08 MP)

$$\begin{split} \min_{\boldsymbol{x}\in\mathbb{R}^{N}} f(\boldsymbol{x}): f \text{ smooth & convex & L Lip. Const.} \\ \text{Solver: plain} \to \text{gradient descent } O(\frac{1}{k}) \ \boldsymbol{x}_{x+1} = \boldsymbol{x}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}_{k}) \\ \text{Nest. Acc. } O(\frac{1}{k^{2}}) \ \boldsymbol{x}_{x+1} = \boldsymbol{v}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{v}_{k}), \ \boldsymbol{v}_{k+1} = t_{k}^{1} \boldsymbol{x}_{k} + t_{k}^{2} \boldsymbol{x}_{k+1} \\ \to \text{Cubic reg. (Nest. 06 MP)} \to \text{Acc. version (Nest. 08 MP)} \\ \min_{\boldsymbol{x}\in\mathbb{R}^{N}} f(\boldsymbol{x}) + g(\boldsymbol{x}): g \text{ nonsmooth & convex & L Lip. Const. of } f(\boldsymbol{x}) \end{split}$$

$$\begin{split} \min_{\boldsymbol{x}\in\mathbb{R}^{N}} f(\boldsymbol{x}): f \text{ smooth & convex & L Lip. Const.} \\ \text{Solver: plain} \to \text{gradient descent } \mathcal{O}(\frac{1}{k}) \ \boldsymbol{x}_{x+1} = \boldsymbol{x}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}_{k}) \\ \text{Nest. Acc. } \mathcal{O}(\frac{1}{k^{2}}) \ \boldsymbol{x}_{x+1} = \boldsymbol{v}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{v}_{k}), \ \boldsymbol{v}_{k+1} = t_{k}^{1} \boldsymbol{x}_{k} + t_{k}^{2} \boldsymbol{x}_{k+1} \\ \to \text{Cubic reg. (Nest. 06 MP)} \to \text{Acc. version (Nest. 08 MP)} \\ \min_{\boldsymbol{x}\in\mathbb{R}^{N}} f(\boldsymbol{x}) + g(\boldsymbol{x}): g \text{ nonsmooth & convex & L Lip. Const. of } f(\boldsymbol{x}) \\ \text{Define } \operatorname{Prox}_{g}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{v}} \frac{1}{2} \|\boldsymbol{v} - \boldsymbol{x}\|_{2}^{2} + g(\boldsymbol{v}) \\ \text{Solver: plain} \to \text{proximal gradient method} \end{split}$$

$$\mathbf{x}_{k+1} = \operatorname{Prox}_{g}(\mathbf{x}_{k} - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{x}_{k}))$$

 $\min_{\boldsymbol{x} \in \mathbb{R}^{N}} f(\boldsymbol{x}): f \text{ smooth & convex & } L \text{ Lip. Const.}$ Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \boldsymbol{x}_{x+1} = \boldsymbol{x}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}_{k})$ Nest. Acc. $O(\frac{1}{k^{2}}) \boldsymbol{x}_{x+1} = \boldsymbol{v}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} f(\boldsymbol{v}_{k}), \boldsymbol{v}_{k+1} = t_{k}^{1} \boldsymbol{x}_{k} + t_{k}^{2} \boldsymbol{x}_{k+1}$ \rightarrow Cubic reg. (Nest. 06 MP) \rightarrow Acc. version (Nest. 08 MP) $\min_{\boldsymbol{x} \in \mathbb{R}^{N}} f(\boldsymbol{x}) + g(\boldsymbol{x}): g \text{ nonsmooth & convex & } L \text{ Lip. Const. of } f(\boldsymbol{x})$ Define $\operatorname{Prox}_{g}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{v}} \frac{1}{2} ||\boldsymbol{v} - \boldsymbol{x}||_{2}^{2} + g(\boldsymbol{v})$ Solver: plain \rightarrow proximal gradient method

$$\boldsymbol{x}_{k+1} = \operatorname{Prox}_{g}(\boldsymbol{x}_{k} - \frac{1}{L}\nabla_{\boldsymbol{x}}f(\boldsymbol{x}_{k}))$$

Nest. Acc. (APM or FISTA)

$$\boldsymbol{x}_{k+1} = \operatorname{Prox}_{g}(\boldsymbol{v}_{k} - \frac{1}{L}\nabla_{\boldsymbol{x}}f(\boldsymbol{v}_{k})), \, \boldsymbol{v}_{k+1} = t_{k}^{1}\boldsymbol{x}_{k} + t_{k}^{2}\boldsymbol{x}_{k+1}$$

 $\min_{\mathbf{x}\in\mathbb{R}^{N}} f(\mathbf{x}): f \text{ smooth & convex & } L \text{ Lip. Const.}$ Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \mathbf{x}_{x+1} = \mathbf{x}_{k} - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{x}_{k})$ Nest. Acc. $O(\frac{1}{k^{2}}) \mathbf{x}_{x+1} = \mathbf{v}_{k} - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{v}_{k}), \mathbf{v}_{k+1} = t_{k}^{1} \mathbf{x}_{k} + t_{k}^{2} \mathbf{x}_{k+1}$ $\rightarrow \text{ Cubic reg. (Nest. 06 MP)} \rightarrow \text{ Acc. version (Nest. 08 MP)}$ $\min_{\mathbf{x}\in\mathbb{R}^{N}} f(\mathbf{x}) + g(\mathbf{x}): g \text{ nonsmooth & convex & } L \text{ Lip. Const. of } f(\mathbf{x})$ Define $\operatorname{Prox}_{g}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{v}} \frac{1}{2} ||\mathbf{v} - \mathbf{x}||_{2}^{2} + g(\mathbf{v})$ Solver: plain \rightarrow proximal gradient method

$$\boldsymbol{x}_{k+1} = \operatorname{Prox}_{\boldsymbol{g}}(\boldsymbol{x}_k - \frac{1}{L}\nabla_{\boldsymbol{x}}f(\boldsymbol{x}_k))$$

Nest. Acc. (APM or FISTA)

$$\boldsymbol{x}_{k+1} = \operatorname{Prox}_{g}(\boldsymbol{v}_{k} - \frac{1}{L}\nabla_{\boldsymbol{x}}f(\boldsymbol{v}_{k})), \, \boldsymbol{v}_{k+1} = t_{k}^{1}\boldsymbol{x}_{k} + t_{k}^{2}\boldsymbol{x}_{k+1}$$

 $\min_{\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots} f(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots): \text{ block coordinate descent and acc. version}$

 $\min_{\mathbf{x}\in\mathbb{R}^{N}} f(\mathbf{x}): f \text{ smooth & convex & L Lip. Const.}$ Solver: plain \rightarrow gradient descent $O(\frac{1}{k}) \mathbf{x}_{x+1} = \mathbf{x}_{k} - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{x}_{k})$ Nest. Acc. $O(\frac{1}{k^{2}}) \mathbf{x}_{x+1} = \mathbf{v}_{k} - \frac{1}{L} \nabla_{\mathbf{x}} f(\mathbf{v}_{k}), \mathbf{v}_{k+1} = t_{k}^{1} \mathbf{x}_{k} + t_{k}^{2} \mathbf{x}_{k+1}$ \rightarrow Cubic reg. (Nest. 06 MP) \rightarrow Acc. version (Nest. 08 MP) $\min_{\mathbf{x}\in\mathbb{R}^{N}} f(\mathbf{x}) + g(\mathbf{x}): g$ nonsmooth & convex & L Lip. Const. of $f(\mathbf{x})$ Define $\operatorname{Prox}_{g}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{v}} \frac{1}{2} ||\mathbf{v} - \mathbf{x}||_{2}^{2} + g(\mathbf{v})$ Solver: plain \rightarrow proximal gradient method

$$\boldsymbol{x}_{k+1} = \operatorname{Prox}_{g}(\boldsymbol{x}_{k} - \frac{1}{L}\nabla_{\boldsymbol{x}}f(\boldsymbol{x}_{k}))$$

Nest. Acc. (APM or FISTA)

$$\boldsymbol{x}_{k+1} = \operatorname{Prox}_{g}(\boldsymbol{v}_{k} - \frac{1}{L}\nabla_{\boldsymbol{x}}f(\boldsymbol{v}_{k})), \, \boldsymbol{v}_{k+1} = t_{k}^{1}\boldsymbol{x}_{k} + t_{k}^{2}\boldsymbol{x}_{k+1}$$

 $\min_{\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots} f(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots): \text{ block coordinate descent and acc. version}$

Many others ...

Generalizing Nesterov's Acceleration

Can we accelerate an abstract solver by Nesterov's scheme?

Generalizing Nesterov's Acceleration

Can we accelerate an abstract solver by Nesterov's scheme?

Looks possible and we have some answers

Generalizing Nesterov's Acceleration

Can we accelerate an abstract solver by Nesterov's scheme?

Looks possible and we have some answers

DOI: 10.1002/nla.2417

RESEARCH ARTICLE

WILEY

On adapting Nesterov's scheme to accelerate iterative methods for linear problems

Tao Hongo | Irad Yavneh

Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel

Abstract Nesterov's well-known scheme for accelerating gradient descent in convex opti-

T. Hong and I. Yavneh, NLAA, 2022.

Generalizing Nesterov's Scheme Motivation

General Nest. Acc.

Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation Our Suggestion Numerical Results

We consider $(\mathbf{A} \succeq \mathbf{0})$

$$\min_{\boldsymbol{x}\in\mathbb{R}^{N}}\frac{1}{2}\boldsymbol{x}^{\mathcal{T}}\boldsymbol{A}\boldsymbol{x}-\boldsymbol{f}^{\mathcal{T}}\boldsymbol{x}\Leftrightarrow\boldsymbol{A}\boldsymbol{x}=\boldsymbol{f}$$

We consider $(\mathbf{A} \succeq \mathbf{0})$

$$\min_{\boldsymbol{x}\in\mathbb{R}^{N}}\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}-\boldsymbol{f}^{T}\boldsymbol{x}\Leftrightarrow\boldsymbol{A}\boldsymbol{x}=\boldsymbol{f}$$

Nest. formulation:

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \boldsymbol{B}\boldsymbol{v}_k + \text{Constant} \\ \boldsymbol{v}_{k+1} &= \boldsymbol{x}_{k+1} + \boldsymbol{c}_k(\boldsymbol{x}_{k+1} - \boldsymbol{x}_k) \end{aligned}$$

We consider $(\mathbf{A} \succeq \mathbf{0})$

$$\min_{\boldsymbol{x}\in\mathbb{R}^{N}}\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}-\boldsymbol{f}^{T}\boldsymbol{x}\Leftrightarrow\boldsymbol{A}\boldsymbol{x}=\boldsymbol{f}$$

Nest. formulation:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{B}\mathbf{v}_k + \text{Constant} \\ \mathbf{v}_{k+1} &= \mathbf{x}_{k+1} + c_k(\mathbf{x}_{k+1} - \mathbf{x}_k) \end{aligned}$$

B iteration matrix, e.g., $\mathbf{B} = \mathbf{I} - a_k \mathbf{A}$ (gradient descent)

We consider $(\mathbf{A} \succeq \mathbf{0})$

$$\min_{\boldsymbol{x}\in\mathbb{R}^{N}}\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}-\boldsymbol{f}^{T}\boldsymbol{x}\Leftrightarrow\boldsymbol{A}\boldsymbol{x}=\boldsymbol{f}$$

Nest. formulation:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{B}\mathbf{v}_k + \text{Constant} \\ \mathbf{v}_{k+1} &= \mathbf{x}_{k+1} + c_k(\mathbf{x}_{k+1} - \mathbf{x}_k) \end{aligned}$$

B iteration matrix, e.g., $\mathbf{B} = \mathbf{I} - a_k \mathbf{A}$ (gradient descent)

Next question: how to choose c_k & can we get acceleration?

We consider $(\mathbf{A} \succeq \mathbf{0})$

$$\min_{\boldsymbol{x}\in\mathbb{R}^{N}}\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}-\boldsymbol{f}^{T}\boldsymbol{x}\Leftrightarrow\boldsymbol{A}\boldsymbol{x}=\boldsymbol{f}$$

Nest. formulation:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{B}\mathbf{v}_k + \text{Constant} \\ \mathbf{v}_{k+1} &= \mathbf{x}_{k+1} + c_k(\mathbf{x}_{k+1} - \mathbf{x}_k) \end{aligned}$$

B iteration matrix, e.g., $\mathbf{B} = \mathbf{I} - a_k \mathbf{A}$ (gradient descent)

Next question: how to choose c_k & can we get acceleration?

The answer is positive at least for some **B**

Optimal Acceleration \rightarrow The Choice of c_k

Assumption: **B** only has real eigenvalues.

Optimal Acceleration \rightarrow The Choice of c_k

Assumption: **B** only has real eigenvalues.

 $-1 < b_1 \leq \cdots \leq b_N < 1$ (eigenvalue **B**) & $c_{cr}(b) = \frac{1-\sqrt{1-b}}{1+\sqrt{1-b}}$ Theorem

 $\textit{Let} - 1 < b_1 \leq b_N < 1 \rightarrow \textit{c}^* = \textit{c}_{\textit{cr}}(\textit{g}(b_1, b_N))$

$$g(b_1, b_N) = \begin{cases} b_N, & b_N \ge -3b_1, \\ -\frac{8b_Nb_1(b_1+b_N)}{(b_1-b_N)^2}, & -\frac{1}{3}b_1 < b_N < -3b_1, \\ b_1, & b_N \le -\frac{1}{3}b_1, \end{cases}$$

yielding conv. factor

$$r^* = \begin{cases} 1 - \sqrt{1 - b_N}, & b_N \ge -3b_1, \\ r(c^*, b_1) = r(c^*, b_N), & -\frac{1}{3}b_1 < b_N < -3b_1, \\ \sqrt{1 - b_1} - 1, & b_N \le -\frac{1}{3}b_1. \end{cases}$$

$$r(c,b) = \frac{1}{2} \left| (1+c)b + sgn(b)\sqrt{(1+c)^2b^2 - 4cb} \right|$$

• $c_k \rightarrow c$

- $c_k \rightarrow c$
- Nest. can converge even for some divergent **B** (whose spectral radii are larger than 1). Relax assumption from

 $-1 < b_1 \le b_N < 1$ to $-3 < b_1 \le b_N < 1$.

- $c_k \rightarrow c$
- Nest. can converge even for some divergent **B** (whose spectral radii are larger than 1). Relax assumption from

 $-1 < b_1 \le b_N < 1$ to $-3 < b_1 \le b_N < 1$.

• Optimal step-size $\frac{4}{3L}$

- $c_k \rightarrow c$
- Nest. can converge even for some divergent **B** (whose spectral radii are larger than 1). Relax assumption from

$$-1 < b_1 \le b_N < 1$$
 to $-3 < b_1 \le b_N < 1$.

• Optimal step-size $\frac{4}{3L}$

•
$$AR = \frac{\log r^*}{\log b_N}$$
 b_N conv. factor (plain)

B Complex Eigenvalues

Denote by $b^c = \overline{b}^c e^{j\theta}$ *j*: imaginary unit; \overline{b}^c : modulus; $\theta \in (-\pi, \pi]$: argument

B Complex Eigenvalues

Denote by $b^c = \overline{b}^c e^{j\theta}$ *j*: imaginary unit; \overline{b}^c : modulus; $\theta \in (-\pi, \pi]$: argument

Theorem

In addition to $-1 < b_1 \leq \cdots \leq b_N < 1$ of **B**,

B also has complex eigenvalues.

Then, c^* and r^* remain valid if the modulus of all complex eigenvalues satisfies

$$\bar{b}^{c} \leq \begin{cases} \frac{1}{3}b_{N} & b_{N} \geq -3b_{1} \\ \min(|b_{1}|, |b_{N}|) & -\frac{1}{3}b_{1} < b_{N} < -3b_{1} \\ -\frac{1}{3}b_{1} & b_{N} \leq -\frac{1}{3}b_{1} \end{cases}$$

Compare with RI Chebyshev Acc.

Left: $b_1 = -0.3$ and $b_N = 0.9$; Right: $b_1 = -0.5$ and $b_N = 0.9$.

$$\begin{aligned} \mathbf{x}_1 &= \gamma(\mathbf{B}\mathbf{x}_0 + \text{Constant}) + (1 - \gamma)\mathbf{x}_0, \\ \mathbf{x}_{k+1} &= \beta_{k+1} \left\{ \gamma(\mathbf{B}\mathbf{x}_k + \text{Constant}) + (1 - \gamma)\mathbf{x}_k \right\} + (1 - \beta_{k+1})\mathbf{x}_{k-1} \end{aligned}$$

Compare with RI Chebyshev Acc.

Left: $b_1 = -0.3$ and $b_N = 0.9$; Right: $b_1 = -0.5$ and $b_N = 0.9$.

Nest. and RI Cheb. are different

Generalizing Nesterov's Scheme

Motivation General Nest. Acc. Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation Our Suggestion Numerical Results

Numerical Tests

Consider a diffusion equation:

$$-\nabla(\sigma(x,y)\nabla u(x,y))=f(x,y)$$

Numerical Tests

Consider a diffusion equation:

$$-\nabla(\sigma(x,y)\nabla u(x,y))=f(x,y)$$

Test on three examples:

1) $\sigma(x, y) = 1$; 2) $\sigma(x, y)$ sampled from log-normal distribution; 3) $\sigma(x, y)$ sampled from uniform distribution;

Numerical Tests

Consider a diffusion equation:

$$-\nabla(\sigma(x,y)\nabla u(x,y))=f(x,y)$$

Test on three examples:

1) $\sigma(x, y) = 1$; 2) $\sigma(x, y)$ sampled from log-normal distribution; 3) $\sigma(x, y)$ sampled from uniform distribution; Discretized on a 1024 × 1024 uniform grid $\rightarrow Au = f$ Residual vector: $\mathbf{r}_k = \mathbf{f} - Au_k$; Residual norm: $\|\mathbf{r}_k\|_2$; Conv. factor: $\lim_{k\to\infty} \frac{\|\mathbf{r}_{k+1}\|_2}{\|\mathbf{r}_k\|_2}$

Numerical Tests

Consider a diffusion equation:

$$-\nabla(\sigma(x,y)\nabla u(x,y))=f(x,y)$$

Test on three examples:

1) $\sigma(x, y) = 1$; 2) $\sigma(x, y)$ sampled from log-normal distribution; 3) $\sigma(x, y)$ sampled from uniform distribution; Discretized on a 1024 × 1024 uniform grid $\rightarrow Au = f$ Residual vector: $\mathbf{r}_k = \mathbf{f} - Au_k$; Residual norm: $\|\mathbf{r}_k\|_2$; Conv. factor: $\lim_{k\to\infty} \frac{\|\mathbf{r}_{k+1}\|_2}{\|\mathbf{r}_k\|_2}$

B: multigrid methods

Local relaxation Restriction Interpolation

The Poisson problem Damped Jacobi relaxation $\rightarrow \mathbf{B}$ only has real eiganvalues

The Poisson problem Damped Jacobi relaxation $\rightarrow \mathbf{B}$ only has real eiganvalues

PCG: preconditioned conjugate gradient

V(1,1): multigrid method

The Poisson problem Red-Black relaxation $\rightarrow \textbf{\textit{B}}$ contains complex & real eiganvalues PCG: invalid

The Poisson problem Red-Black relaxation \rightarrow *B* contains complex & real eiganvalues PCG: invalid

Test 2: $\sigma(x, y)$ log-normal distribution

- B: Black Box multigrid method (complex)
- Cheb. Acc.: invalid
- V(1,1) : multigrid method

Test 2: $\sigma(x, y)$ log-normal distribution

B: Black Box multigrid method (complex)

Cheb. Acc.: invalid

V(1,1): multigrid method

Test 3: $\sigma(x, y)$ normal distribution

B: Black Box multigrid method (complex)

Cheb. Acc.: invalid

Test 3: $\sigma(x, y)$ normal distribution

B: Black Box multigrid method (complex)

Cheb. Acc.: invalid

Generalizing Nesterov's Scheme

Motivation General Nest. Acc. Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation

Our Suggestion Numerical Results

x^{true}

x^{true}

forward process **A** k-space **y**

x^{true}

forward process **A** k-space **y** r

recovered \boldsymbol{x}^*

$$y = Ax^{true} + noise$$

Fully sample $\boldsymbol{x}^* = \text{IFFT}(\boldsymbol{y})$

Fully sample $\mathbf{x}^* = \text{IFFT}(\mathbf{y})$

Reco. in CS MRI \rightarrow Composite Optimization Problem

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})} + R(\boldsymbol{x})$$

Fully sample $\mathbf{x}^* = \text{IFFT}(\mathbf{y})$

Reco. in CS MRI \rightarrow Composite Optimization Problem

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}}\underbrace{\frac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})}+R(\boldsymbol{x})$$

$$\mathbf{A} = [\mathbf{A}_i, \cdots], \, \mathbf{A}_i = \mathbf{PFS}_i$$

Fully sample $\mathbf{x}^* = \text{IFFT}(\mathbf{y})$

Reco. in CS MRI \rightarrow Composite Optimization Problem

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}}\underbrace{\frac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})}+R(\boldsymbol{x})$$

$$\mathbf{A} = [\mathbf{A}_i, \cdots], \, \mathbf{A}_i = \mathbf{PFS}_i$$

P: downsample; **F**: (nonuniform) FFT; **S**_i: sensitivity mapping

Fully sample $\mathbf{x}^* = \text{IFFT}(\mathbf{y})$

Reco. in CS MRI \rightarrow Composite Optimization Problem

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}}\underbrace{\frac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})}+R(\boldsymbol{x})$$

$$m{A} = [m{A}_i, \cdots], m{A}_i = m{PFS}_i$$

P: downsample; **F**: (nonuniform) FFT; **S**_i: sensitivity mapping

 $R(\mathbf{x})$: regularizer

We consider wavelet, TV, or both.

Wavelet and TV

 $\text{Wavelet Reco.}\qquad \lambda>0$

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{C}^M} \frac{1}{2} \|\mathbf{A}\mathbf{T}^{-1}\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

T: wavelet transform, image $T^{-1}x^*$

Wavelet and TV

Wavelet Reco. $\lambda > 0$

$$\boldsymbol{x}^* = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \| \boldsymbol{A} \boldsymbol{T}^{-1} \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \lambda \| \boldsymbol{x} \|_1$$

T: wavelet transform, image $T^{-1}x^*$

$$\boldsymbol{x}^* = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \mathrm{TV}(\boldsymbol{x})$$

image x*

Wavelet and TV

 $\text{Wavelet Reco.} \qquad \lambda > 0$

$$\boldsymbol{x}^* = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{T}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$$

T: wavelet transform, image $T^{-1}x^*$

TV Reco.

$$\boldsymbol{x}^* = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \mathrm{TV}(\boldsymbol{x})$$

image x*

Wavelet and TV Reco.

$$\boldsymbol{x}^* = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \alpha \|\boldsymbol{T}\boldsymbol{x}\|_1 + \lambda(1-\alpha) \mathrm{TV}(\boldsymbol{x}), \ \alpha \in (0,1)$$

Solvers min_{$$\boldsymbol{x} \in \mathbb{C}^N$$} $\underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2}_{f(\boldsymbol{x})} + R(\boldsymbol{x})$

Solvers $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})}$ Wavelet Reco. $\min_{\boldsymbol{x} \in \mathbb{C}^{M}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{T}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} \rightarrow \text{FISTA (APM)}$

Solvers $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})}$ Wavelet Reco. $\min_{\boldsymbol{x} \in \mathbb{C}^{M}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{T}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} \rightarrow \text{FISTA (APM)}$

TV Reco.

$$\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \underbrace{\mathrm{TV}(\boldsymbol{x})}_{\|\boldsymbol{D}\boldsymbol{x}\|_{1}} \rightarrow \mathsf{APM} \text{ iter. proximal mapping}$$

Solvers min_{$\boldsymbol{x} \in \mathbb{C}^N$} $\underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2}_{f(\boldsymbol{x})} + R(\boldsymbol{x})$

Wavelet Reco. $\min_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{T}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{x}\|_1 \rightarrow \text{FISTA} (\text{APM})$

TV Reco.

$$\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \underbrace{\mathrm{TV}(\boldsymbol{x})}_{\|\boldsymbol{D}\boldsymbol{x}\|_{1}} \rightarrow \text{APM iter. proximal mapping}$$

Wavelet and TV Reco. $\min_{\boldsymbol{x}\in\mathbb{C}^N}\frac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_2^2 + \lambda\alpha\|\boldsymbol{T}\boldsymbol{x}\|_1 + \lambda(1-\alpha)\mathrm{TV}(\boldsymbol{x}) \rightarrow \mathsf{APM}\&\mathsf{ADMM}$

Solvers min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})} + R(\boldsymbol{x})

Wavelet Reco. min_{$\boldsymbol{x} \in \mathbb{C}^{M}$} $\frac{1}{2} \|\boldsymbol{AT}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} \rightarrow \text{FISTA}$ (APM)

TV Reco.

$$\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \underbrace{\mathrm{TV}(\boldsymbol{x})}_{\|\boldsymbol{D}\boldsymbol{x}\|_{1}} \rightarrow \mathsf{APM} \text{ iter. proximal mapping}$$

Wavelet and TV Reco. $\min_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \alpha \|\boldsymbol{T}\boldsymbol{x}\|_1 + \lambda(1 - \alpha) \mathrm{TV}(\boldsymbol{x}) \to \mathsf{APM}\&\mathsf{ADMM}$

Proximal gradient descent:

$$\mathbf{x}_{k+1} = \underset{\mathbf{u}}{\operatorname{argmin}} f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{u} - \mathbf{x}_k \rangle + \frac{1}{2a_k} \|\mathbf{u} - \mathbf{x}_k\|_2^2 + R(\mathbf{u})$$

$$\underbrace{\operatorname{Prox}_{a_k R}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u}} a_k R(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_2^2}$$

Solvers min_{\boldsymbol{x} \in \mathbb{C}^N} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2}_{f(\boldsymbol{x})} + R(\boldsymbol{x})

Wavelet Reco. $\min_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \|\boldsymbol{AT}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{x}\|_1 \rightarrow \text{FISTA} (\text{APM})$

TV Reco.

$$\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \underbrace{\mathrm{TV}(\boldsymbol{x})}_{\|\boldsymbol{D}\boldsymbol{x}\|_{1}} \rightarrow \mathsf{APM} \text{ iter. proximal mapping}$$

Wavelet and TV Reco. $\min_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \alpha \|\boldsymbol{T}\boldsymbol{x}\|_1 + \lambda(1 - \alpha) \mathrm{TV}(\boldsymbol{x}) \to \mathsf{APM}\&\mathsf{ADMM}$

Proximal gradient descent:

$$\boldsymbol{x}_{k+1} = \underbrace{\operatorname{argmin}_{\boldsymbol{u}} f(\boldsymbol{x}_k) + \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{u} - \boldsymbol{x}_k \rangle + \frac{1}{2a_k} \|\boldsymbol{u} - \boldsymbol{x}_k\|_2^2 + R(\boldsymbol{u})}_{\operatorname{Prox}_{a_{\boldsymbol{u}},\boldsymbol{R}}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{u}} a_k R(\boldsymbol{u}) + \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{x}_k\|_2^2}$$

Nest. Acc.

$$\mathbf{x}_{k+1} = \operatorname{Prox}_{a_k R}(\mathbf{v}_k - a_k \nabla_{\mathbf{x}} f(\mathbf{v}_k))$$
$$\mathbf{v}_{k+1} = t_k^1 \mathbf{x}_k + t_k^2 \mathbf{x}_{k+1}$$

Generalizing Nesterov's Scheme

Motivation General Nest. Acc. Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation

Our Suggestion

Numerical Results

Our Suggestion – Complex Quasi-Newton Proximal Methods(CQNPMs) $\min_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda R(\boldsymbol{x})$

$$\mathbb{C}^{N} \underbrace{\frac{2}{2}}_{f(\mathbf{x})} + \mathcal{K}^{r}$$

Our Suggestion – Complex Quasi-Newton Proximal Methods (CQNPMs) $\min_{\boldsymbol{x}\in\mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})} + \lambda R(\boldsymbol{x})$ $\mathbf{x}_{k+1} = \operatorname{argmin} f(\boldsymbol{x}_{k}) + \langle \nabla f(\boldsymbol{x}_{k}), \boldsymbol{u}-\boldsymbol{x}_{k} \rangle + \frac{1}{2} (\boldsymbol{u}-\boldsymbol{x}_{k})^{\mathcal{H}} \boldsymbol{B}_{k}(\boldsymbol{u}-\boldsymbol{x}_{k}) + R(\boldsymbol{u})$

$$=\underbrace{\operatorname{argmin}_{u} (\mathbf{x}_{k}) + \langle \mathbf{v} (\mathbf{x}_{k}), \mathbf{u} - \mathbf{x}_{k} \rangle + \frac{2a_{k}}{2a_{k}} (\mathbf{u} - \mathbf{x}_{k}) - \mathbf{B}_{k} (\mathbf{u} - \mathbf{x}_{k}) + \mathbf{H}(\mathbf{u})}_{\operatorname{Prox}_{a_{k}B}^{W}(\mathbf{x}) = \operatorname{argmin}_{u} a_{k} B(\mathbf{u}) + \frac{1}{2} ||\mathbf{u} - \mathbf{x}||_{W}^{2}, W = \mathbf{B}_{k}}$$

Our Suggestion – Complex Quasi-Newton Proximal Methods (CQNPMs) $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \frac{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}{f(\boldsymbol{x})} + \lambda R(\boldsymbol{x})$ $\mathbf{x}_{k+1} = \underset{\boldsymbol{u}}{\operatorname{argmin}} f(\boldsymbol{x}_{k}) + \langle \nabla f(\boldsymbol{x}_{k}), \boldsymbol{u} - \boldsymbol{x}_{k} \rangle + \frac{1}{2a_{k}} (\boldsymbol{u} - \boldsymbol{x}_{k})^{\mathcal{H}} \boldsymbol{B}_{k} (\boldsymbol{u} - \boldsymbol{x}_{k}) + R(\boldsymbol{u})$

$$\begin{aligned} &\operatorname{Prox}_{a_{k}R}^{W}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{u}} a_{k} R(\boldsymbol{u}) + \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{x}\|_{W}^{2}, \ \boldsymbol{W} = \boldsymbol{B}_{k} \\ & \boldsymbol{x}_{k+1} = \operatorname{Prox}_{a_{k}R}^{\boldsymbol{B}_{k}}(\boldsymbol{x}_{k} - a_{k}\boldsymbol{B}_{k}^{-1}\nabla_{\boldsymbol{x}}f(\boldsymbol{x}_{k})) \\ & \boldsymbol{B}_{k} \approx \boldsymbol{A}^{\mathcal{H}}\boldsymbol{A}, \ \text{we use the SR1 method} \end{aligned}$$

Our Suggestion – Complex Quasi-Newton Proximal Methods (CQNPMs) $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})} + \lambda R(\boldsymbol{x})$

$$\mathbf{x}_{k+1} = \underbrace{\operatorname{argmin}_{u} f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}_{k}), \mathbf{u} - \mathbf{x}_{k} \rangle + \frac{1}{2a_{k}} (\mathbf{u} - \mathbf{x}_{k})^{\mathcal{H}} \mathbf{B}_{k} (\mathbf{u} - \mathbf{x}_{k}) + R(\mathbf{u})}_{\operatorname{Prox}_{a_{k}R}^{W}(\mathbf{x}) = \operatorname{argmin}_{u} a_{k} R(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{W}^{2}, W = \mathbf{B}_{k}}}_{\mathbf{x}_{k+1}} = \operatorname{Prox}_{a_{k}R}^{\mathbf{B}_{k}} (\mathbf{x}_{k} - a_{k} \mathbf{B}_{k}^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_{k}))}_{\mathbf{B}_{k}} \approx \mathbf{A}^{\mathcal{H}} \mathbf{A}, \text{ we use the SR1 method}}$$
CONPMs converge faster than APMs \rightarrow iterations

Our Suggestion – Complex Quasi-Newton Proximal Methods (CQNPMs) $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})} + \lambda R(\boldsymbol{x})$

$$\mathbf{x}_{k+1} = \underbrace{\operatorname{argmin}_{u} f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}_{k}), \mathbf{u} - \mathbf{x}_{k} \rangle + \frac{1}{2a_{k}} (\mathbf{u} - \mathbf{x}_{k})^{\mathcal{H}} \mathbf{B}_{k} (\mathbf{u} - \mathbf{x}_{k}) + R(\mathbf{u})}_{\operatorname{Prox}_{a_{k}R}^{W}(\mathbf{x}) = \operatorname{argmin}_{u} a_{k} R(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{W}^{2}, W = \mathbf{B}_{k}}}_{\mathbf{x}_{k+1}} = \operatorname{Prox}_{a_{k}R}^{\mathbf{B}_{k}} (\mathbf{x}_{k} - a_{k} \mathbf{B}_{k}^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_{k}))}_{\mathbf{x}_{k}} \mathbf{B}_{k} \approx \mathbf{A}^{\mathcal{H}} \mathbf{A}, \text{ we use the SR1 method}}$$

CQNPMs converge faster than APMs \rightarrow iterations Wall (CPU or GPU) time?

Our Suggestion – Complex Quasi-Newton Proximal Methods (CQNPMs) $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{f(\boldsymbol{x})} + \lambda R(\boldsymbol{x})$

$$\mathbf{x}_{k+1} = \underbrace{\operatorname{argmin}_{u} f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}_{k}), \mathbf{u} - \mathbf{x}_{k} \rangle + \frac{1}{2a_{k}} (\mathbf{u} - \mathbf{x}_{k})^{\mathcal{H}} \mathbf{B}_{k} (\mathbf{u} - \mathbf{x}_{k}) + R(\mathbf{u})}{\frac{\operatorname{Prox}_{a_{k}R}^{W}(\mathbf{x}) = \operatorname{argmin}_{u} a_{k} R(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{W}^{2}, W = \mathbf{B}_{k}}{\mathbf{x}_{k+1}} = \operatorname{Prox}_{a_{k}R}^{\mathbf{B}_{k}} (\mathbf{x}_{k} - a_{k} \mathbf{B}_{k}^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_{k}))}$$
$$\mathbf{B}_{k} \approx \mathbf{A}^{\mathcal{H}} \mathbf{A}, \text{ we use the SR1 method}$$
CQNPMs converge faster than APMs \rightarrow iterations
Wall (CPU or GPU) time?
Slow because of $\operatorname{Prox}_{a_{k}R}^{\mathbf{B}_{k}}$

Our Suggestion – Complex Quasi-Newton Proximal Methods (CQNPMs) $\min_{\boldsymbol{x} \in \mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda R(\boldsymbol{x})}_{\boldsymbol{x} \in \mathbb{C}^{N}}$

£(...)

$$\mathbf{x}_{k+1} = \underset{u}{\operatorname{argmin}} f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}_{k}), \mathbf{u} - \mathbf{x}_{k} \rangle + \frac{1}{2a_{k}} (\mathbf{u} - \mathbf{x}_{k})^{\mathcal{H}} \mathbf{B}_{k} (\mathbf{u} - \mathbf{x}_{k}) + R(\mathbf{u})$$

$$\underbrace{u}^{\operatorname{Prox}_{a_{k}R}^{W}(\mathbf{x}) = \operatorname{argmin}_{u} a_{k} R(\mathbf{u}) + \frac{1}{2} ||\mathbf{u} - \mathbf{x}||_{W}^{2}, W = \mathbf{B}_{k}}{\mathbf{x}_{k+1}} = \operatorname{Prox}_{a_{k}R}^{\mathbf{B}_{k}} (\mathbf{x}_{k} - a_{k} \mathbf{B}_{k}^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_{k}))$$

$$\mathbf{B}_{k} \approx \mathbf{A}^{\mathcal{H}} \mathbf{A}, \text{ we use the SR1 method}$$
CQNPMs converge faster than APMs \rightarrow iterations
Wall (CPU or GPU) time?
Slow because of $\operatorname{Prox}_{a_{k}R}^{\mathbf{B}_{k}}$

A Complex Quasi-Newton Proximal Method for Image Reconstruction in Compressed Sensing MRI

Tao Hong, Luis Hernandez-Garcia, and Jeffrey A. Fessler, Fellow, IEEE

arXiv:2303.02586

Challenging Issues – Compute $\operatorname{Prox}_{R}^{W}(\boldsymbol{x})$

$$\operatorname{Prox}_{R}^{W}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{u}} R(\boldsymbol{u}) + \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{x}\|_{W}^{2}$$
$$R(\boldsymbol{u}) = \|\cdot\|_{1}, \operatorname{TV}, \alpha\|\cdot\|_{1} + (1-\alpha)\operatorname{TV}$$

Challenging Issues – Compute $\operatorname{Prox}_{R}^{W}(\boldsymbol{x})$

$$\begin{aligned} \operatorname{Prox}_{R}^{\boldsymbol{W}}(\boldsymbol{x}) &= \operatorname{argmin}_{\boldsymbol{u}} R(\boldsymbol{u}) + \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{x}\|_{\boldsymbol{W}}^{2} \\ R(\boldsymbol{u}) &= \|\cdot\|_{1}, \operatorname{TV}, \alpha \|\cdot\|_{1} + (1-\alpha) \operatorname{TV} \\ \end{aligned}$$

$$\begin{aligned} \operatorname{Define} \mathcal{L} : \mathbb{C}^{(I-1)\times J} \times \mathbb{C}^{I\times (J-1)} \to \mathbb{C}^{I\times J} \text{ that} \\ \mathcal{L}(\boldsymbol{P}, \boldsymbol{Q})_{i,j} &= \boldsymbol{P}_{i,j} + \boldsymbol{Q}_{i,j} - \boldsymbol{P}_{i-1,j} - \boldsymbol{Q}_{i,j-1}, \forall i, j, \end{aligned}$$

The adjoint operator of $\mathcal{L}: \mathbb{C}^{l \times J} \to \mathbb{C}^{(l-1) \times J} \times \mathbb{C}^{l \times (J-1)}$ is

$$\mathcal{L}^{\mathcal{T}}(\boldsymbol{X}) = (\boldsymbol{P}, \boldsymbol{Q}),$$

that $\boldsymbol{P}_{i,j} = \boldsymbol{X}_{i,j} - \boldsymbol{X}_{i+1,j}, \boldsymbol{Q}_{i,j} = \boldsymbol{X}_{i,j} - \boldsymbol{X}_{i,j+1}, \forall i, j.$

For complex x, y, we have

$$\begin{split} \sqrt{|x|^2 + |y|^2} &= \max_{\substack{p_1, p_2 \in \mathbb{C} \\ p \in \mathbb{C}}} \left\{ \Re \left(p_1^* x + p_2^* y \right) : |p_1|^2 + |p_2|^2 \le 1 \right\} \\ &|x| = \max_{p \in \mathbb{C}} \left\{ \Re \left(p^* x \right) : |p| \le 1 \right\} \end{split}$$

For complex x, y, we have

$$\begin{split} \sqrt{|x|^2 + |y|^2} &= \max_{\substack{p_1, p_2 \in \mathbb{C} \\ p \in \mathbb{C}}} \left\{ \Re \left(p_1^* x + p_2^* y \right) : |p_1|^2 + |p_2|^2 \le 1 \right\} \\ &|x| = \max_{p \in \mathbb{C}} \left\{ \Re \left(p^* x \right) : |p| \le 1 \right\} \end{split}$$

Then

$$\mathrm{TV}(\boldsymbol{x}) = \max_{(\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}} \Re \left\{ \mathrm{vec} \left(\mathcal{L} \left(\boldsymbol{P}, \boldsymbol{Q} \right) \right)^{\mathcal{H}} \boldsymbol{x} \right\},$$

$$\|\mathbf{T}\mathbf{x}\|_{1} = \max_{\mathbf{z}\in\mathcal{Z}} \Re\left\{\mathbf{z}^{\mathcal{H}}\mathbf{T}\mathbf{x}\right\}$$

 $\mathcal{P}, \mathcal{Z}:$ convex sets

Consider wavelet and TV: $\operatorname{Prox}_{R}^{W}(\mathbf{x}) = \arg\min_{\mathbf{u}} R(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{W}^{2}$

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}}\max_{\substack{\boldsymbol{z}\in\mathcal{Z}\\(\boldsymbol{P},\boldsymbol{Q})\in\mathcal{P}}}\|\boldsymbol{x}-\boldsymbol{v}_{k}\|_{\boldsymbol{B}_{k}}^{2}+2\lambda g(\boldsymbol{x},\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

 $\boldsymbol{v}_k = \boldsymbol{x}_k - a_k \boldsymbol{B}_k^{-1} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}_k)$ and

$$g(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) = \Re \left\{ \alpha \langle \boldsymbol{T} \boldsymbol{x}, \boldsymbol{z} \rangle + (1 - \alpha) \operatorname{vec} \left(\mathcal{L} \left(\boldsymbol{P}, \boldsymbol{Q} \right) \right)^{\mathcal{H}} \boldsymbol{x} \right\}$$

Consider wavelet and TV: $\operatorname{Prox}_{R}^{W}(\mathbf{x}) = \arg\min_{\mathbf{u}} R(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{W}^{2}$

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}}\max_{\substack{\boldsymbol{z}\in\mathcal{Z}\\(\boldsymbol{P},\boldsymbol{Q})\in\mathcal{P}}}\|\boldsymbol{x}-\boldsymbol{v}_{k}\|_{\boldsymbol{B}_{k}}^{2}+2\lambda g(\boldsymbol{x},\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

 $\boldsymbol{v}_k = \boldsymbol{x}_k - a_k \boldsymbol{B}_k^{-1} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}_k)$ and

$$g(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) = \Re \left\{ \alpha \langle \boldsymbol{T} \boldsymbol{x}, \boldsymbol{z} \rangle + (1 - \alpha) \operatorname{vec} \left(\mathcal{L} \left(\boldsymbol{P}, \boldsymbol{Q} \right) \right)^{\mathcal{H}} \boldsymbol{x} \right\}$$

$$\max_{\substack{\boldsymbol{z}\in\mathcal{Z},\\ (\boldsymbol{P},\boldsymbol{Q})\in\mathcal{P}}} \min_{\boldsymbol{x}\in\mathbb{C}^N} \|\boldsymbol{x}-\boldsymbol{w}_k(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_k}^2 - \|\boldsymbol{w}_k(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_k}^2$$

$$\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q}) = \boldsymbol{v}_{k} - \lambda \boldsymbol{B}_{k}^{-1} \left(\alpha \boldsymbol{T}^{\mathcal{H}} \boldsymbol{z} + (1-\alpha) \operatorname{vec} \left(\mathcal{L}(\boldsymbol{P},\boldsymbol{Q}) \right) \right)$$

$$\max_{\substack{\boldsymbol{z}\in\mathcal{Z},\\ (\boldsymbol{P},\boldsymbol{Q})\in\mathcal{P}}} \min_{\boldsymbol{x}\in\mathbb{C}^{N}} \|\boldsymbol{x}-\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_{k}}^{2} - \|\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_{k}}^{2}$$
$$\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q}) = \boldsymbol{v}_{k} - \lambda \boldsymbol{B}_{k}^{-1} \left(\alpha T^{\mathcal{H}}\boldsymbol{z} + (1-\alpha)\operatorname{vec}\left(\mathcal{L}(\boldsymbol{P},\boldsymbol{Q})\right)\right)$$
$$\boldsymbol{x}^{*} = \boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

$$\max_{\substack{\boldsymbol{z}\in\mathcal{Z},\\ (\boldsymbol{P},\boldsymbol{Q})\in\mathcal{P}}} \min_{\boldsymbol{x}\in\mathbb{C}^{N}} \|\boldsymbol{x}-\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_{k}}^{2} - \|\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_{k}}^{2}$$
$$\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q}) = \boldsymbol{v}_{k} - \lambda \boldsymbol{B}_{k}^{-1} \left(\alpha \boldsymbol{T}^{\mathcal{H}}\boldsymbol{z} + (1-\alpha)\operatorname{vec}\left(\mathcal{L}(\boldsymbol{P},\boldsymbol{Q})\right)\right)$$
$$\boldsymbol{x}^{*} = \boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

Gradient

$$-2\lambda \begin{bmatrix} \alpha \mathbf{T} \\ (1-\alpha)\mathcal{L}^T \end{bmatrix} \mathbf{w}_k(\mathbf{z}, \mathbf{P}, \mathbf{Q}) \text{ APM, iter.}$$

$$\max_{\substack{\boldsymbol{z}\in\mathcal{Z},\\ (\boldsymbol{P},\boldsymbol{Q})\in\mathcal{P}}} \min_{\boldsymbol{x}\in\mathbb{C}^{N}} \|\boldsymbol{x}-\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_{k}}^{2} - \|\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})\|_{\boldsymbol{B}_{k}}^{2}$$
$$\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q}) = \boldsymbol{v}_{k} - \lambda \boldsymbol{B}_{k}^{-1} \left(\alpha T^{\mathcal{H}}\boldsymbol{z} + (1-\alpha)\operatorname{vec}\left(\mathcal{L}(\boldsymbol{P},\boldsymbol{Q})\right)\right)$$
$$\boldsymbol{x}^{*} = \boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

Gradient

$$-2\lambda \begin{bmatrix} \alpha \mathbf{T} \\ (1-\alpha)\mathcal{L}^T \end{bmatrix} \mathbf{w}_k(\mathbf{z}, \mathbf{P}, \mathbf{Q})$$
 APM, iter.

But

$$\boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q}) = \boldsymbol{v}_{k} - \lambda \boldsymbol{B}_{k}^{-1} \left(\alpha \boldsymbol{T}^{\mathcal{H}} \boldsymbol{z} + (1-\alpha) \operatorname{vec} \left(\mathcal{L}(\boldsymbol{P},\boldsymbol{Q}) \right) \right)$$

Structure of $\boldsymbol{B}_k = \boldsymbol{D} + \sigma \boldsymbol{u} \boldsymbol{u}^{\mathcal{H}}$

Define
$$\pmb{\sigma}= \mathsf{1}/\left<\pmb{m}_k-\pmb{H}_0\pmb{s}_k,\pmb{s}_k
ight>$$
 & $\pmb{D}=\pmb{H}_0$

Algorithm 1 SR1

Initialization: $\gamma > 1$, $\delta = 10^{-8}$, $\Xi > 0$ a fixed real scalar, \mathbf{x}_k , \mathbf{x}_{k-1} , $\nabla f(\mathbf{x}_k)$, and $\nabla f(\mathbf{x}_{k-1})$. 1: 2: Set $\mathbf{s}_k \leftarrow \mathbf{x}_k - \mathbf{x}_{k-1}$ and $\mathbf{m}_k \leftarrow \nabla f(\mathbf{x}_k) - \nabla f(\mathbf{x}_{k-1})$. 3: Compute $\tau_k \leftarrow \gamma \frac{\|\boldsymbol{m}_k\|_2^2}{\langle \boldsymbol{s}_k, \boldsymbol{m}_k \rangle}$. % $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{b}^{\mathcal{H}} \boldsymbol{a}$ 4: : 5: $H_0 \leftarrow \tau_k I$. 6: $\boldsymbol{u}_k \leftarrow \boldsymbol{m}_k - \boldsymbol{H}_0 \boldsymbol{s}_k$. 7: $\boldsymbol{B}_k \leftarrow \boldsymbol{H}_0 + \frac{\boldsymbol{u}_k \boldsymbol{u}_k^{\mathcal{H}}}{\langle \boldsymbol{m}_k - \boldsymbol{H}_0 \, \boldsymbol{s}_k, \boldsymbol{s}_k \rangle}.$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

Gradient

$$-2\lambda \begin{bmatrix} 1T\\(1-1)\mathcal{L}^T \end{bmatrix} w_k(z, P, Q)$$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

Gradient

$$-2\lambda \begin{bmatrix} 1 \mathbf{T} \\ (1-1)\mathcal{L}^{\mathcal{T}} \end{bmatrix} \mathbf{w}_k(\mathbf{z}, \mathbf{P}, \mathbf{Q})$$

Solve $\min_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \| \boldsymbol{A} \boldsymbol{T}^{-1} \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \lambda \| \boldsymbol{x} \|_1$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

Gradient

$$-2\lambda \begin{bmatrix} 1\mathbf{T} \\ (1-1)\mathcal{L}^{\mathcal{T}} \end{bmatrix} \boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

Solve
$$\min_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{T}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$$

Theorem (Becker19 SIAMOPT: real \rightarrow complex) Let $\textbf{W} = \textbf{D} \pm \textbf{u} \textbf{u}^{\mathcal{H}}$. Then,

$$\operatorname{Prox}_{\lambda R}^{\boldsymbol{W}}(\boldsymbol{x}) = \operatorname{Prox}_{\lambda R}^{\boldsymbol{D}}(\boldsymbol{x} \mp \boldsymbol{D}^{-1}\boldsymbol{u}\beta^*),$$

where $\beta^* \in \mathbb{C}$ is the unique zero of the following nonlinear equation

$$\mathbb{J}(\boldsymbol{\beta}): \boldsymbol{u}^{\mathcal{H}}\left(\boldsymbol{x} - \operatorname{Prox}_{\lambda R}^{\boldsymbol{D}}(\boldsymbol{x} \mp \boldsymbol{D}^{-1}\boldsymbol{u}\boldsymbol{\beta})\right) + \boldsymbol{\beta}.$$

$$(\boldsymbol{z}^*, \boldsymbol{P}^*, \boldsymbol{Q}^*) = \operatorname*{argmin}_{\substack{\boldsymbol{z} \in \mathcal{Z}, \\ (\boldsymbol{P}, \boldsymbol{Q}) \in \mathcal{P}}} \| \boldsymbol{w}_k(\boldsymbol{z}, \boldsymbol{P}, \boldsymbol{Q}) \|_{\boldsymbol{B}_k}^2.$$

Gradient

$$-2\lambda \begin{bmatrix} \mathbf{1T} \\ (1-1)\mathcal{L}^{\mathcal{T}} \end{bmatrix} \boldsymbol{w}_{k}(\boldsymbol{z},\boldsymbol{P},\boldsymbol{Q})$$

Solve
$$\min_{\boldsymbol{x} \in \mathbb{C}^M} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{T}^{-1}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$$

Theorem (Becker19 SIAMOPT: real \rightarrow complex) Let $\textbf{W} = \textbf{D} \pm \textbf{u} \textbf{u}^{\mathcal{H}}$. Then,

$$\operatorname{Prox}_{\lambda R}^{\boldsymbol{W}}(\boldsymbol{x}) = \operatorname{Prox}_{\lambda R}^{\boldsymbol{D}}(\boldsymbol{x} \mp \boldsymbol{D}^{-1}\boldsymbol{u}\beta^*),$$

where $\beta^* \in \mathbb{C}$ is the unique zero of the following nonlinear equation

$$\mathbb{J}(\boldsymbol{\beta}): \boldsymbol{u}^{\mathcal{H}}\left(\boldsymbol{x} - \operatorname{Prox}_{\boldsymbol{\lambda}\boldsymbol{B}}^{\boldsymbol{D}}(\boldsymbol{x} \mp \boldsymbol{D}^{-1}\boldsymbol{u}\boldsymbol{\beta})\right) + \boldsymbol{\beta}.$$

$$m{B}_k=m{D}+\sigmam{u}m{u}^{\mathcal{H}}$$
 and $\sigma=1/\left$ is rea

What is More: TV + Wavelet?

Wavelet and TV: Gradient

$$-2\lambda \begin{bmatrix} \alpha \mathbf{T} \\ (1-\alpha) \mathcal{L}^{\mathcal{T}} \end{bmatrix} \mathbf{w}_k(\mathbf{z}, \mathbf{P}, \mathbf{Q})$$

What is More: TV + Wavelet?

Wavelet and TV: Gradient

$$-2\lambda \begin{bmatrix} \alpha \mathbf{T} \\ (1-\alpha) \mathcal{L}^{\mathcal{T}} \end{bmatrix} \mathbf{w}_k(\mathbf{z}, \mathbf{P}, \mathbf{Q})$$

Partially smooth:

$$\min_{\boldsymbol{x}\in\mathbb{C}^{N}} \underbrace{\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} + \lambda\alpha \cdot S^{\eta}(\|\boldsymbol{T}\boldsymbol{x}\|_{1})}_{f(\boldsymbol{x})} + \underbrace{\lambda(1-\alpha)TV(\boldsymbol{x})}_{R(\boldsymbol{x})}$$

 $\mathrm{S}^{\eta}(\|\boldsymbol{x}\|_{1}) = \sum_{n=1}^{N} \sqrt{\boldsymbol{x}_{n}^{2} + \eta}$

Generalizing Nesterov's Scheme

Motivation General Nest. Acc. Numerical Tests

Magical High-order Methods \rightarrow CS MRI Reco.

Problem Formulation Our Suggestion Numerical Results

Experimental Settings

- Took k-space data from NYU fastMRI dataset
- Applied the ESPIRiT algorithm to recover the complex images
- Cropped the images to size 256×256 with maximum magnitude scaled to one
- Formulated the simulated k-space data with a given trajectory
- Added Gaussian noise with mean zero and variance 10⁻² to all coils to form the final measurements

Experimental Settings

- Took k-space data from NYU fastMRI dataset
- Applied the ESPIRiT algorithm to recover the complex images
- Cropped the images to size 256×256 with maximum magnitude scaled to one
- Formulated the simulated k-space data with a given trajectory
- Added Gaussian noise with mean zero and variance 10⁻² to all coils to form the final measurements

96 radial projections, 512 readout points, and 12 coils

Wavelet

Wavelet+TV

Ours: CQNPM & S-CQNPM

Thanks & Questions?

