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Abstract—Allpass filters have found many applications in
signal processing areas. This paper describes an algorithm for the
design of stable allpass digital filter with equiripple group delay
errors. The problem is formulated as an iterative reweighted
linear program (LP) problem. An algorithm is derived for
solving such a problem. The design examples are given, which
demonstrate that the proposed algorithm is very efficient and
converges much faster than the existing ones for the design of
allpass filters with equiripple constant group delay errors.

Index Terms—allpass, equiripple, weighting function, iterative
minimax

I. INTRODUCTION

Digital allpass filters are a specific class of filters which only
change the input signals’ phase spectrum. In the recent years,
allpass filters have been used in many digital signal processing
applications [1]-[6] such as design and implementation of
filter banks, halfband filters, notch filters, multirate filters,
variable fractional delay filters and group-delay equalization,
etc. Since an allpass filter has a unit magnitude across the
whole frequency range [0,π], the design of such a filter is
actually an approximation of phase response. There are two
widely used criteria for the approximation problem that are the
minimax and the weighted least-squares [2], [4], [7]. More-
over, the minimax criterion minimizes the filter’s maximum
phase deviation from a desired one, which is better than the
weighted least squares. Several algorithms for the minimax
design are shown in the literature [8], [9]. All these algorithms
can be used for designing allpass filters with equiripple phase
errors. By incorporating an iterative minimax technique, the
weighted least-squares method can also be applied to the
equiripple phase and group delay errors design [10], [11].

It is noted [11] that a minimax allpass filter has an equiripple
phase error and the maximum phase error is the smallest.
However, the filter’s group delay error is not equiripple.
Moreover, the group delay deviation near the band edge is
much larger than elsewhere in the frequency band of interest.
It is shown that the minimax phase error design can not obtain
an allpass filter with an equiripple group delay. In order to do
that, some minimax or equiripple group delay error design
methods had been proposed. In [5] an iterative reweighted

least-squares group delay error method is used for designing
allpass variable fractional delay filters with minimax group
delay errors. A least pth group delay error method is also used
to obtain allpass filters with equiripple group delay errors. As
we all know that either the l2 or the lp norm of the group
delay error is highly nonconvex, both methods are difficult to
find true minimax group delay error filters.

Recently, a procedure was presented in [11] to design allpass
digital filters with near equiripple group delay errors by iter-
ative reweighted minimax which contains a stable constrain.
However, the number of iterations required in [11] is large
and the positive realness condition with a pole radius which
is used to control the stability is too strict. The main objective
in this paper is to propose a new approach to overcome these
problems.

The main contributions are as follows. Instead of using the
pole radius based constrain, the positive realness condition
without a pole radius is used in our propose algorithm, which
has been shown very efficient. In order to speed up the conver-
gence, a new weighting function is proposed, which leads to an
allpass filter with equiripple group delay errors. This method,
referred to as an iterative reweighted minimax (IRWM) phase
error method, is different from the method proposed in [11]
though both of them use an iterative reweighted technique. In
our method a new weighting function is utilized in the design
and a less restrict stability constrain is proposed.

This paper is organized as follows. In Section II, the
problem of designing allpass filter with equiripple phase error
is introduced and the an existing minimax-based algorithm is
presented which is to be compared with our proposed one. Our
main contribution is found in Section III, where the optimal
design problem is formulated with a less restrictive stability
constraint and more efficient weighting function introduced.
An algorithm is also proposed in this section. Section IV
presents two design examples which demonstrate the superior
convergence behavior and the effectiveness of the proposed
algorithm. Some conclusions is given in Section V.



II. PRELIMINARIES

An N-th order digital allpass filter can be described as

Hap(z)
△
=

z−NA(z−1)

A(z)
(1)

where A(z) = 1 + a1z−1 + a2z−2 + · · · + aNz−N

and the filter coefficients vector is denoted by
aaa

△
=

[
a1 · · · ak · · · aN

]T
, where T denotes the

transpose operator.
By substituting z with e jω in the (1), we obtain the

frequency response of the filter Hap(z) as follows:

Hap(e jω)
△
=

e− jNωA(e− jω)

A(e jω)
= e jθ(ω,aaa) (2)

where θ(ω,aaa) is the filter’s phase response and through some
manipulators, it can be shown that:

θ(ω,aaa) =−Nω+2φ(ω,aaa) (3)

where

φ(ω,aaa) = tan−1 sssT (ω)aaa
1+ cccT (ω)aaa

(4)

with sss(ω) and ccc(ω) given below:

sss(ω) =
[

sinω · · · sin(kω) · · · sin(Nω)
]T (5)

ccc(ω) =
[

cosω · · · cos(kω) · · · cos(Nω
]T (6)

Assume that the desired phase frequency response is θd(ω),
which is defined on a dense grid of frequencies linearly
distributed from ω = 0 to ω = π to form a set of linear
equations. Then the phase response error between θd(ω) and
the actual response is

Eθ(ω) = θ(ω,aaa)−θd(ω) (7)

Substituting (3) in (7), we have

Eθ(ω,aaa)
2

= φ(ω,aaa)−βd(ω) (8)

where βd(ω) =
Nω+θd(ω)

2 .
By taking the tangent of both sides of (8) and using (4),

we have

tan
Eθ(ω,aaa)

2
=

−sinβd(ω)+ ŝssT (ω)aaa
cosβd(ω)+ ĉccT (ω)aaa

(9)

where ŝss(ω) = sss(ω)cosβd(ω) − ccc(ω)sinβd(ω) and ĉcc(ω) =
ccc(ω)cosβd(ω)+ sss(ω)sinβd(ω). By some simple algebra op-
erations, the ŝss(((ωωω))) and ĉcc(ω) can be described as:

ŝss(ω) =


sin[ω−βd(ω)]
sin[2ω−βd(ω)]

...
sin[Nω−βd(ω)]

 (10)

ĉcc(ω) =


cos[ω−βd(ω)]
cos[2ω−βd(ω)]

...
cos[Nω−βd(ω)]

 (11)

Since the tangent function is monotonic increasing in
(−π

2 ,
π
2 ) and −π

2 < Eθ(ω,aaa) < π
2 , imposing an upper bound

∆ on |Eθ(ω,aaa)| is equivalent to impose an upper bound δ
on | tan[Eθ(ω,aaa)

2 ]| with δ = | tan(∆
2 )|. Now the problem can be

formed as a minimax phase error design of the allpass filter
Hap(e jω) as follows:

minδ,aaa δ
s.t. |−sinβd(ω)+Ŝ(ωi)aaa

cosβd(ω)+Ĉ(ωi)aaa
| ≤ δ, i = 1,2, . . . ,nΩ

(12)

In order to solve this problem, the methods described in [7],
[11] can be referred. For convenience the method proposed in
[11] is used. The main procedure of this algorithm is given
below:

Algorithm 1:

Phase 1: Let aaa(0) = 000 and k = 0.
Phase 2: Solve the following problem for aaa(k+1):

aaa(k+1) = arg minδ,aaa δ
s.t. −δ ≤ −sinβd(ω)+Ŝ(ωi)aaa

|cosβd(ω)+Ĉ(ωi)aaa(k)|
≤ δ, i = 1,2, . . . ,nΩ

(13)

Phase 3: If
maxωi |Eθ(ω,aaa(k+1))|−maxωi |Eθ(ω,aaa(k))|

maxωi |Eθ(ω,aaa(k))|
> v (14)

where v> 0 is a relative tolerance of the maximun phase error,
let k = k+1 and go back to Phase 2. Otherwise, terminate the
algorithm.

Comments:
• Equation (13) is an LP problem which can be solved by

many toolbox, Such as Matlab optimization toolbox and
CVX [12].

• Algorithm 1 is used to obtain an allpass digital filter with
equiripple phase error, which yields a fast convergence.

• Note that the allpass digital filter is an IIR filter, the
stability should be considered in the process of optimal
design. In the following section a simple constraint will
be proposed which can guarantee the stability efficient.

III. THE PROPOSED ALGORITHM

This section shall present a constrain to guarantee the filter
stability and weighting function design which can get an
equiripple group delay error. Moreover the proposed algorithm
is also given.

A. Stability
The stability of A(z) is guaranteed if

Re[A(e jω)]> 0, for ω ∈ [0,π] (15)

In practical operation the Re[A(e jω)]≥ ξ will be used instead
of equation (15), Where ξ is a very small positive value to
ensure a reasonable stability margin [13]. The discrete version
of (15) is implemented, i.e., Re[A(e jω)] ≥ ξ > 0, for ω ∈
SΩs = {ωi, i = 1,2, . . . ,nΩs}. Due to this, a set of linear
constraints on aaa have been formed:

AAAΩsaaa ≤ (1−ξ)eeeΩs (16)



where

AAAΩs =−


cosω1 cos2ω1 · · · cosNω1
cosω2 cos2ω2 · · · cosNω2

...
...

...
...

cosωnΩs
cos2ωnΩs

· · · cosNωnΩs


eeenΩs

=
[

1 1 · · · 1
]T ∈ ℜnΩs×1

It should be pointed that the condition in (15) is sufficient
to ensure the stability. However the constraints are linear
and can be handled easily. In fact the constraints in (15)
are often restrictive which can guarantee the stability simple.
Fortunately, the discrete version of the condition, namely (16),
offers some flexibility in controlling filter’s stability. On one
hand, with a proper dense SΩs , the constraints in (16) can be
made arbitrary close to (15) so as to guarantee the stability.
On the other hand, from our experience a sparse SΩs can
also guarantee the stability and have less restrictive. In our
following simulation the constraints in (16) with an nΩs lesser
than the order is also sufficient to yield a stable design.

B. Weighting function W (ω)
To guarantee an allpass filter design with equiripple group

delay errors, a weighting function is proposed in [11] which
is imposed on the constrains described as (13). However the
algorithm’s convergence in this weighting function is slower.
In order to find a better weighting function to accelerate the
convergence. A new weighting function proposed in [14] is
used in our method. We think the weighting function shown in
[11] using the information about the envelope is seldom, so the
convergence is slow. In fact the weighting function proposed
in [14] by Lim can be used to solve this problem. In this
correspondence, Lim’s weighting function is used directly.

The algorithm for the weighting function design is given as
follows:

• Given an initial weight function W0(ω) for ω∈ SΩ which
can set to be [1,1, · · · ,1].

• A new aaa(k) will produce a new Eθk(ω). Moreover the

group delay error can be describe as Egk(ω) =
∂Eθk (ω)

∂ω .
The envelop of |Egk(ω)| is Θk(ω). Define the ith extremal
group delay errors at the kth iteration as the errors where
Θk(ωJ(i)) > Θk(ωJ(i)±1). Band edges are considered as
extremal errors. The extremal group delay errors should
be labeled consecutively so that ωJ(i+1) > ωJ(i) for i =
1,2, · · · . We define the ith extremal point of the kth
iteration as

Vk(i) = Θk(ωJ(i)) (17)

It is noted that the Vk(i) too small or even 0 will yields
the weighting to zero in every iteration. To avoid this,
for any nonband edge Vk(i) less than 0.1 of min(Vk(i−
1),Vk(i+ 1)), we shall arbitrarily define Vk(i) to be 0.1
of the min(Vk(i−1),Vk(i+1)).

• The new envelop function, αk(ω), is formed by joining
together all the extremal points of the same frequency
band of interest using straight lines. Extremal points of

different frequency band are not jointed together. For
ωJ(i) < ω < ωJ(i+1), αk(ω) is given by

αk(ω) =
ω−ωJ(i)

ωJ(i+1)−ωJ(i)
Vk(i+1)+

ωJ(i+1)−ω
ωJ(i+1)−ωJ(i)

Vk(i)

(18)
where ωJ(i+1) and ωJ(i) are of the same frequency band.

• Define a function Ξk(ωi) = (ταk(ωi))
1.5, for i =

1,2, . . . ,nΩ. where τ is the average value of 1
αk(ωi)

, for i=
1,2, . . . ,nΩ.

• Reform the weighting function as Wk+1(ω) =
Wk(ω)Ξk(ω).

Based on the discussions above, an iterative reweighted
minimax method is proposed to obtain an allpass digital filter
with equiripple group delay error. The main steps of the
proposed algorithm are given below:

Algorithm 2:
• Step I: Set the initial values aaa(0),W0(ω) which can get

from the result of algorithm 1 and set k = 0.
• Step II: Solve the following problem for aaa(k+1):

aaa(k+1) = argminδ,aaa δ
s.t. −δ ≤ Wk(ωi)(−sinβd(ω)+Ŝ(ωi)aaa)

|cosβd(ω)+Ĉ(ωi)aaa(k)|
≤ δ, i = 1,2, . . . ,nΩ

AAAΩs aaa ≤ (1−ξ)eeeΩs
(19)

• Step III: Through the aaa(k+ 1) form the new weighting
function Wk+1(ω)

• Step VI: Let ρave be the average group delay errors’ ripple
magnitude. The algorithm will be terminated once (20)
is satisfied:

ρmax ≤ (1+ γ)ρave (20)

where ρmax is the maximum ripple magnitude in the group
delay errors and γ is a small positive tolerance. Otherwise,
let k = k+1 and go back to Step VI.

Comments:
• The initial selection in the algorithm 2 can reduce the

iteration about 1 or 2 for our experience. So this selection
only a custom will not affect the convergence speed
severely.

• A pre-specified number of iterations can also be used to
terminate algorithm , the final available solution is also
good.

IV. DESIGN NUMERICAL EXAMPLES

In this section, two examples are presented to demonstrate
the performance of Algorithm 1 given in [11]and the proposed
Algorithm 2 in this paper. For comparison purpose, the
examples used in [11] are adopted in this paper.

Example 1: Design an 8-th order allpass filter with a de-
signed linear phase response θd(ω) = −0.70615ω defined
on Ω = [0,0.8π]. The nΩ and nΩs are set to 401 and 6,
respectively. Moreover the algorithm will be terminated, when
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Fig. 1. Phase error response of the allpass filters
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Fig. 2. Group delay response of the filters

the maximum phase error smaller than 3.274×10−5 which is
proposed in [11].

Algorithm 1 converges very fast. It takes 1 iteration,
resulting in a filter with a maximum phase and group delay
errors of 3.251×10−5 and 2.591×10−3, respectively, which
are smaller and faster than that of [11]. Moreover the poles of
the filter obtained are given in Table I. The largest magnitude
of the poles is 0.9785. The filter’s phase error and group delay
responses on ω are shown in Figs. 1 and 2, respectively. It
is noted that the phase error is equiripple, while the group
delay error is not. It can be seen from Figs. 1 and 2 that a
large group delay error is near the high frequency edge than
elsewhere. Algorithm 2 can solve this problem successfully
and presented in Example 2.

TABLE I
POLES OF THE TRANSFER FUNCTION IN EXAMPLE 1

Poles
−0.97848456

0.24207910
−0.24763441±0.17880626 j
−0.02002978±0.26115500 j

0.16765515±0.18030637 j

Example 2: In this example we use the same specifications as
Example 1 and the result in Example 1 as the initial value.
Running the algorithm 2, we get a better result than [11] after
2 iterations. In our algorithm the maximum phase and group
delay errors are 5.996×10−5, 7.113×10−4.

In this example the poles of the filter obtained are given
in Table II. The largest magnitude of the poles is 0.9795.
Additionally the phase error responses and the group delay
responses in every iterations are shown in Figs. 1 and 2.

TABLE II
POLES OF THE TRANSFER FUNCTION IN EXAMPLE 2

Poles
−0.97952308

0.26007895
−0.26152806±0.18446780 j
−0.02510860±0.27714599 j

0.17804754±0.19466024 j

Comments:
• As seen from the simulations, our proposed algorithm

converges much faster Algorithm 1. The resultant filters
yield the maximum group delay error much smaller, while
the phase error is larger. This is due to the fact that
the weighting function lets the group delay error evenly
distribution in all of the interesting frequency interval.

• In our simulations, Algorithm 2 in this example con-
verges after 5 iterations. It was also observed that after 2
iterations the change is in the same order of magnitudes.

V. CONCLUSIONS

A new approach has been proposed in this paper for the
minimax phase error design of allpass filters. In order to obtain
equiripple group delay errors, an iterative reweighted minimax
method has been proposed. The new method converges faster
than the method presented in [11] applied in the design of
allpass filter with equiripple group delays.
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