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A Complex Quasi-Newton Proximal Method for
Image Reconstruction in Compressed Sensing MRI
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Abstract—Model-based methods are widely used for recon-

struction in compressed sensing (CS) magnetic resonance imaging

(MRI), using regularizers to describe the images of interest.

The reconstruction process is equivalent to solving a composite

optimization problem. Accelerated proximal methods (APMs)

are very popular approaches for such problems. This paper

proposes a complex quasi-Newton proximal method (CQNPM)

for the wavelet and total variation based CS MRI reconstruction.

Compared with APMs, CQNPM requires fewer iterations to

converge but needs to compute a more challenging proximal

mapping called weighted proximal mapping (WPM). To make

CQNPM more practical, we propose efficient methods to solve

the related WPM. Numerical experiments on reconstructing non-

Cartesian MRI data demonstrate the effectiveness and efficiency

of CQNPM.

Index Terms—Compressed sensing, magnetic resonance imag-

ing (MRI), non-Cartesian trajectory, sparsity, wavelets, total

variation, second-order.

I. INTRODUCTION

M
AGNETIC resonance imaging (MRI) scanners acquire
samples of the Fourier transform (known as k-space

data) of the image of interest. However, MRI is slow since the
speed of acquiring k-space data is limited by many constraints,
e.g., hardware, physics, and physiology etc. Improving the
acquisition speed is crucial for many MRI applications. Lustig
et al. [1] proposed a technique called compressed sensing (CS)
MRI that improves the imaging speed significantly. CS MRI
allows one to get an image of interest from undersampling data
by solving the following composite optimization problem:

xxx⇤ = arg min
xxx2CN

1
2
kAAAxxx� yyyk2

2
| {z }

f (xxx)

+lh(xxx), (1)

where AAA 2 CML⇥N denotes the forward model describing a
mapping from the latent image xxx to the acquired k-space
data yyy 2 CML, h(xxx) is the regularizer that provides some
prior assumptions about xxx, L � 1 denotes the number of
coils, and l > 0 is a tradeoff parameter to balance f (xxx)
and h(xxx). We note that AAA consists of L different submatrices
AAAl = FFFFFFSSSl 2 CM⇥N for l = 1,2, . . . ,L, where FFF denotes the
downsampling mask, FFF represents the nonuniform fast Fourier
transform that depends on the sampling trajectory, and SSSl is a
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diagonal matrix involving the sensitivity map for the lth coil
which differs for each scan.

Sparsity plays a key role in the success of CS MRI. In
general, MR images are not sparse but they can be sparsely
represented under some transforms, e.g., total variation (TV)
[1], wavelets [2], and transform-learning [3] etc. Recently,
more advanced priors or frameworks were introduced for
CS MRI reconstruction, such as low-rank [4], plug and play
[5, 6], model-based deep learning [7], score-based generative
models [8], to name a few. Although deep learning based
reconstruction methods have shown better performance than
classical priors like TV and wavelet when trained with suf-
ficient data, Gu et al. [9] recently found that suitably trained
wavelet regularizers can also achieve comparable performance,
demonstrating the power of the classical regularizers. Fol-
lowing Lustig et al. work in [1], we consider both wavelet
and TV regularizers for CS MRI reconstruction, i.e., we
address the following composite minimization problem for
image reconstruction in CS MRI:

xxx⇤ = arg min
xxx2CN

1
2
kAAAxxx� yyyk2

2 +l
⇥
akTTT xxxk1 +(1�a)TV(xxx)

⇤
, (2)

where TTT and k · k1 denote a general wavelet transform and
`1 norm, TV(·) represents the TV function (see definition in
Section II-B), and a 2 [0,1] is used to balance the wavelet
and TV terms. For a = 1 (respectively, a = 0), (2) becomes
the wavelet (respectively, TV) based CS MRI reconstruction.
Since `1 and TV functions are nonsmooth, accelerated prox-
imal methods (APMs) [10], which have the optimal conver-
gence rate O(1/k2) where k is the number of iterations, are
very popular algorithms for (2). In [11], Beck et al. proposed
a fast iterative shrinkage-thresholding algorithm (FISTA) (a
specific type of APMs) for wavelet-based image reconstruction
and showed a closed-form solution for the related proximal
mapping [10]. Beck et al. [12] extended FISTA to solve TV-
based image reconstruction and suggested a fast dual gradient
descent method to compute the proximal mapping. Primal-
dual methods [13] are also appealing methods for composite
problems. The work in [14] showed that primal-dual methods
can also achieve the optimal convergence rate and showed
their connection to proximal methods. However, primal-dual
methods have to tune parameters that affect the practical
convergence rates and such tuning is nontrivial. For a review of
different variants of primal-dual methods, see [15]. For more
optimization methods and the use of different regularizers for
reconstruction in CS MRI, see [16].

Modern MR images are typically acquired using multiple
receiver coils and non-Cartesian trajectories, resulting in an
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expensive forward process from the image to the k-space
domains and ill-conditioned or under-determined AAA [16]. An
ill-conditioned AAA can lead to slow reconstruction [17]. To
accelerate the recovery process, some preconditioning tech-
niques have been introduced. In [18], Ong et al. proposed a
diagonal matrix D̃DD as a preconditioner such that they solved
the following problem instead of (1):

xxx⇤ = arg min
xxx2CN

1
2
kD̃DD

1
2 (AAAxxx� yyy)k2

2 +lh(xxx). (3)

Recently, Iyer et al. [17] developed more effective polynomial
preconditioners than D̃DD, based on Chebyshev polynomials.
Although [17] showed promising results for practical recon-
struction, adding such a preconditioner changes the incoher-
ence of AAA, which breaks the original theoretical guarantee.
For a 2 (0,1), both wavelet and TV are used as regularizers.
When we have two nonsmooth terms, the alternating direction
method of multipliers (ADMM) [19] is one of the appealing
approaches. However, ADMM only provides linear conver-
gence rate O(1/k) [20] and the computation in each iteration
is high because we need to solve a least square problem. In
[21–23], the authors proposed several preconditioning methods
to solve the least square problem quickly, which reduces the
computation time of the whole reconstruction significantly.

Similar to the quasi-Newton methods for smooth minimiza-
tion problems [24], the authors in [25, 26] developed quasi-
Newton proximal methods (QNPMs) that use second-order
information for solving composite problems when xxx 2 RN .
Compared with APMs, QNPMs need fewer iterations to con-
verge which is appealing for problems when computing the
gradient — f (xxx) is expensive. Indeed, the authors in [27–29]
applied QNPMs to solving the RED model and the TV based
inverse-scattering and X-ray reconstruction and observed faster
convergence than APMs. However, QNPMs require computing
a weighted proximal mapping (WPM), defined in (6), that
needs more computation than computing proximal mapping
in APMs. So often QNPMs are impractical for many real
applications. To compute the WPM, Kadu et al. [28] applied
primal-dual methods. Alternatively, Ge et al. [29] treated the
WPM as a TV based image deblurring problem and computed
the WPM with APMs [12]. Those methods require inner and
outer (i.e., two layers) iterations to compute the WPM, mak-
ing them inefficient. Similar to QNPMs, the variable metric
operator splitting methods (VMOSMs) [30] introduce new
metrics to accelerate the proximal methods. For a discussion
of the differences between QNPMs and VMOSMs, see the
prior work section in [26].

The primary contribution of this paper lies in two signif-
icant advancements. Firstly, we expand QNPMs to address
(1) for complex xxx (Recall that reconstructed MRI images
are inherently complex [31] and in some applications the
image phase itself is useful, e.g., high-field MRI [32] and
quantitative susceptibility mapping [33]). This is achieved
by introducing a symmetric rank-1 method in the complex
plane to approximate the Hessian matrix of f (xxx), which we
called complex quasi-Newton proximal methods (CQNPMs).
Secondly, we propose efficient approaches to compute the
WPM. Notably, the computational needs of CQNPMs align

closely with the proximal mapping in APMs for wavelet
and/or TV-based reconstructions. Our numerical experiments
on wavelet and TV based CS MRI reconstruction show that
CQNPMs converge faster than APMs in terms of iterations and
CPU time, demonstrating the potential advantage of CQNPMs
for practical applications.

The rest of this paper is organized as follows. Section II first
defines some notation and then reviews the formulation of the
discretized TV function and the definition of WPM. Section III
derives our algorithm. Section IV reports numerical experi-
ments on the wavelet and TV based CS MRI reconstruction.
Section V presents some conclusions and future work.

II. PRELIMINARIES

This section first defines some notation that simplifies the
following discussion and then describes the discretized TV
functions. Finally, we define the WPM that generalizes the
well-known proximal mapping.

A. Notation
• Denote by XXX 2CI⇥J the matrix form of xxx2CN with relation

xxx= vec(XXX) and XXX =mat(xxx) where vec(·) denotes a column-
stacking operator and mat(·) is an operator to reshape a
vector to its matrix form.

• The (i, j)th (respectively, nth) element of a matrix XXX 2CI⇥J

(respectively, vector xxx 2CN) is represented as XXXi, j (respec-
tively, xxxn).

• P1 denotes the set of matrix-pairs (PPP,QQQ) where PPP2C(I�1)⇥J

and QQQ 2 CI⇥(J�1) satisfy

|PPPi, j|2 + |QQQi, j|2  1, i = 1, · · · , I�1, j = 1, · · · ,J�1,

|PPPi,J | 1, i = 1, · · · , I�1,

|QQQI, j| 1, J = 1, · · · ,J�1.

• P2 is the set of matrix-pairs (PPP,QQQ) where PPP 2C(I�1)⇥J and
QQQ 2 CI⇥(J�1) satisfy |PPPi, j| 1, |QQQi, j| 1,8i, j.

• Z is the set of vectors zzz 2 CN such that |zzzn| 1, 8n.
• L : C(I�1)⇥J ⇥CI⇥(J�1) ! CI⇥J denotes a linear operator

that satisfies

L(PPP,QQQ)i, j = PPPi, j +QQQi, j�PPPi�1, j�QQQi, j�1,8i, j,

where we assume that PPP0, j = PPPI, j = QQQi,0 = QQQi,J = 0,8i, j.
• The adjoint operator of L : CI⇥J ! C(I�1)⇥J⇥CI⇥(J�1) is

LT (XXX) = (PPP,QQQ),

where PPP 2 C(I�1)⇥J and QQQ 2 CI⇥(J�1) are the matrix pairs
that satisfy

PPPi, j = XXXi, j�XXXi+1, j, i = 1, · · · , I�1, j = 1, · · · ,J,

QQQi, j = XXXi, j�XXXi, j+1, i = 1, · · · , I, j = 1, · · · ,J�1.

B. Discretized Total Variation
Assuming zero Neumann boundary conditions for an image

XXX 2 CI⇥J , i.e.,

XXXI+1, j�XXXI, j = 0, 8 j and XXXi,J+1�XXXi,J = 0, 8i,
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the isotropic and anisotropic TV functions are defined as
follows

TViso(XXX) =
I�1

Â
i=1

J�1

Â
j=1

q
(XXXi, j�XXXi+1, j)

2 +(XXXi, j�XXXi, j+1)
2

+
I�1

Â
i=1

|XXXi,J�XXXi+1,J |+
J�1

Â
j=1

��XXXI, j�XXXI, j+1
�� ,

(4)
and

TV`1(XXX) =
I�1

Â
i=1

J�1

Â
j=1

n��XXXi, j�XXXi+1, j
��+

��XXXi, j�XXXi, j+1
��
o

+
I�1

Â
i=1

|XXXi,J�XXXi+1,J |+
J�1

Â
j=1

��XXXI, j�XXXI, j+1
�� ,

(5)
respectively. Hereafter, we use TV(xxx) to represent either
TViso(XXX) or TV`1(XXX).

C. Weighted Proximal Mapping
Given a proper closed convex function h(xxx) and a Hermitian

positive definite matrix WWW � 0 :2 CN⇥N , the WPM associated
to h is defined as

proxWWW
h (xxx) = argmin

uuu

✓
h(uuu)+

1
2
kuuu� xxxk2

WWW

◆
, (6)

where k · kWWW denotes the WWW -norm defined by kqqqkWWW =p
qqqH WWWqqq. Here H denotes Hermitian transpose. Clearly, (6)

simplifies to the proximal mapping for WWW = IIIN where IIIN
represents the identity matrix. Since h(uuu) + 1

2kuuu� xxxk2
WWW is

strongly convex, proxWWW
h (xxx) exists and is unique for xxx 2 domh

so that the WPM is well defined.

III. COMPLEX QUASI-NEWTON PROXIMAL METHODS

This section first describes a complex quasi-Newton proxi-
mal method (CQNPM) for solving (1) with regularizer h(xxx) =
akTTT xxxk1 + (1� a)TV(xxx) and a 2 [0,1]. Here, we consider
TTT 2 CÑ⇥N to be a wavelet transform. Then, we propose
efficient methods to compute the related WPM. Moreover,
to avoid applying wavelet transforms when computing the
WPM for a 2 [0,1), we propose a partial smooth approach.
Our numerical experiments show that such a partial smooth
strategy recovers the desired images with less computation.

At kth iteration, CQNPM solves (7) for xxxk+1,

xxxk+1 = arg min
xxx2CN

f (xxxk)+ h— f (xxxk),xxx� xxxki+
1

2ak
kxxx� xxxkk2

BBBk

+lh(xxx)

= proxBBBk
aklh(xxxk�akBBB�1

k —xxx f (xxxk)), (7)

where ak is the step-size and BBBk 2 CN⇥N is a Hermitian
symmetric positive definite matrix. For clarity, we present
the detailed steps of CQNPM in Algorithm 1. Note that
Algorithm 1 would be identical to the proximal methods [10]
if one chose BBBk = IIIN . In [30, 34], the authors suggested using
a diagonal matrix BBBk for their application. However, building
such a diagonal matrix is nontrivial and its effectiveness is
problem dependent. In this paper, we choose BBBk to be a more

Algorithm 1 Proposed complex quasi-Newton proximal
method.
Initialization: xxx1.
Iteration:

1: for k = 1,2, . . . do

2: pick the step-size ak and the weighting BBBk.
3: xxxk+1 proxBBBk

aklh

�
xxxk�akBBB�1

k —xxx f (xxxk)
�
.

4: end for

Algorithm 2 SR1 updating.
Initialization: g > 1, d = 10�8, X > 0 a fixed real scalar, xxxk,

xxxk�1, — f (xxxk), and — f (xxxk�1).
1: if k = 1 then

2: BBBk XIII.
3: else

4: Set sssk xxxk� xxxk�1 and mmmk — f (xxxk)�— f (xxxk�1).
5: Compute tk g kmmmkk22

hsssk,mmmki
. % haaa,bbbi= bbbH aaa

6: if t < 0 then

7: BBBk XIII.
8: else

9: HHH0 tkIII.
10: uuuk mmmk�HHH0sssk.
11: if |huuuk,ssski | dkssskk2kuuukk2 then

12: uuuk 000.
13: end if

14: BBBk HHH0 +
uuukuuuH

k
hmmmk�HHH0sssk,ssski

.
15: end if

16: end if

17: Return: BBBk

accurate approximation of the Hessian of f (xxx). Specifically,
we select BBBk based on the Symmetric Rank-1 (SR1) method
[24], a popular method used in quasi-Newton methods for
approximatnig a Hessian matrix. Following the derivation of
SR1 for real variables, we derive a complex plane SR1 that is
similar to the real one. Algorithm 2 presents the implementa-
tion details of SR1 in the complex plane. We found that using
g > 1 is crucial to ensure that BBBk is Hermitian positive definite
in our setting because otherwise hmmmk�HHH0sssk,ssski can become
negative, causing BBBk to turn indefinite. In our numerical
experiments, we found that a fixed g > 1 worked well.

A. Compute Weighted Proximal Mapping
The dominant computation in Algorithm 1 is computing the

WPM at Step 3 which could be as hard as solving (1) for a
general BBBk. However, we find one can compute proxBBBk

aklh(·) as
easily as the case when BBBk = IIIN by using the structure of BBBk.

To compute the WPM proxBBBk
l̄h
(vvvk) at kth iteration, we need

to solve the following problem

min
xxx2CN
kxxx� vvvkk2

BBBk
+2l̄

⇥
akTTT xxxk1 +(1�a)TV(xxx)

⇤
, (8)

where vvvk = xxxk� akBBB�1
k —xxx f (xxxk) and l̄ = akl. A difficulty of

(8) is the nonsmoothness of k ·k1 and TV(·). To address this
difficulty, we consider a dual approach for (8) that is similar
to Chambolle’s approach for TV-based image reconstruction
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[35]. Our method only uses one inner iteration to compute
the WPM, and the related gradient is computed easily. Propo-
sition 1 describes the dual problem of (8) and the relation
between the primal and dual optimal solutions.

Proposition 1. Let

(zzz⇤,PPP⇤,QQQ⇤) = argmin
zzz2Z

(PPP,QQQ)2P

kwwwk(zzz,PPP,QQQ)k2
BBBk

(9)

where wwwk(zzz,PPP,QQQ)= vvvk� l̄BBB�1
k

⇣
aTTT H zzz+(1�a)vec(L(PPP,QQQ))

⌘

and P = P1 or P2 depending on which TV is used. Then the
optimal solution of (8) is given by xxxk+1 = wwwk(zzz⇤,PPP⇤,QQQ⇤).

Proof. See Section A.

Using Proposition 1, we can apply the FISTA [11, 36] to
solve (9) for computing proxBBBk

l̄h
since (9) is convex and con-

tinuously differentiable. Lemma 1 specifies the corresponding
gradient and Lipschitz constant of (9).

Lemma 1. The gradient of (19) is

�2l̄


aTTT
(1�a)LT

�
wwwk(zzz,PPP,QQQ) (10)

and the corresponding Lipschitz constant is

Lc = 2sminl̄2(a2kTTTk2 +8(1�a)2)

where smin is the smallest eigenvalue of BBBk.

Proof. See Section B.

According to the formulation of BBBk proposed in Algo-
rithm 2, we can obtain smin easily through1

smin =

8
><

>:

X if t < 0,
t if hmmmk�HHH0sssk,ssski> 0,
t+ uuuH uuu

hmmmk�HHH0sssk,ssski
if hmmmk�HHH0sssk,ssski< 0.

The value of kTTTk depends on the choice of wavelets which
can be computed in advance, so the computational cost of
obtaining the Lipschitz constant of (19) is cheap. For com-
pleteness, Algorithm 3 presents the implementation details of
FISTA for solving (19). We terminate Algorithm 3 when it
reaches a maximal number of iterations or a given accuracy
tolerance. The initial value (zzz1,PPP1,QQQ1) in Algorithm 3 uses
the final solution of the previous iteration.

Remark 1. Compared with APMs for addressing (1), the addi-
tional cost of CQNPM is applying BBB�1

k in computing vvvk and wwwk
in Algorithms 1 and 3. This inversion can be computed cheaply
through the Woodbury matrix identity. Moreover, computing
the projectors ProjZ(·) and ProjP (·) is also cheap and identical
to the one shown in [12], so we omit the details here. The
step-size ak in Algorithm 1 can be simply set to be 1.

1We note that hmmmk�HHH0sssk,ssski is real in our setting, see Observation I.

Algorithm 3 FISTA for solving (19).
Initialization: BBBk, vvvk, l̄ > 0, a 2 [0,1], Lipschitz constant Lc,

maximal iteration Max Iter, tolerance e > 0, and initial
values zzz1,PPP1,QQQ1.

Iteration:

1: t1 1.
2: (z̄zz1, P̄PP1, Q̄QQ1) (zzz1,PPP1,QQQ1).
3: for s = 1,2, . . . ,Max Iter do

4: Compute w̄ww wwwk(z̄zzs, P̄PPs, Q̄QQs).
5: if a 6= 0 then

6: zzzs+1 ProjZ
�
z̄zzs +

2l̄a
Lc

TTT w̄ww
�
.

7: else

8: Set zzzs+1 empty.
9: end if

10: if a 6= 1 then

11: (PPPs+1,QQQs+1) ProjP
�
(P̄PPs, Q̄QQs)+

2l̄(1�a)
Lc

LT w̄ww
�
.

12: else

13: Set PPPs+1 and QQQs+1 empty.
14: end if

15: if k(zzzs+1� zzzs,PPPs+1�PPPs,QQQs+1�QQQs)k  e then

16: break.
17: end if

18: ts+1 
1+
p

1+4t2
s

2 .

19: (z̄zzs+1, P̄PPs+1, Q̄QQs+1) 
ts+1+ts�1

ts+1
(zzzs+1,PPPs+1,QQQs+1)

� ts�1
ts+1

(zzzs,PPPs,QQQs).
20: ts ts+1.
21: end for

B. Compute the Weighted Proximal Mapping when a = 1

For a = 1, running Algorithm 3 to compute the WPM
would be inefficient since we would have to apply wavelet
transform many times at each outer iteration. However, if TTT
is left invertible that TTT H TTT = IIIN , we can solve the following
problem instead of (2) to avoid using Algorithm 3 to compute
the WPM:

x̄xx⇤ = argmin
x̄xx2CÑ

1
2
kAAATTT H x̄xx� yyyk2

2
| {z }

f (x̄xx)

+lkx̄xxk1. (11)

Then the recovered image is xxx⇤ = TTT H x̄xx⇤. Now the correspond-
ing WPM becomes

proxBBBk
l̄k·k1

(vvvk) = argmin
x̄xx2CÑ

kx̄xx� vvvkk2
BBBk
+2l̄kx̄xxk1. (12)

Note that (2) and (11) represent the analysis-based and
synthetic-based priors, respectively. For a detailed discussion
of their relations and equivalence, see [37].

Let WWW 2CÑ⇥Ñ := DDD±uuuuuuH where DDD 2RÑ⇥Ñ is a diagonal
matrix and uuu 2 CÑ . Becker et al. proposed the following
theorem that relates proxWWW

lh(xxx) and proxDDD
lh(xxx).

Theorem 1 (Theorem 3.4, [26]2). Let WWW = DDD±uuuuuuH . Then,

proxWWW
lh(xxx) = proxDDD

lh(xxx⌥DDD�1uuub⇤),

2The theorem is proved in real plane but it is also valid in complex plane.
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where b⇤ 2 C is the unique zero of the following nonlinear
equation

J(b) : uuuH
⇣

xxx�proxDDD
lh(xxx⌥DDD�1uuub)

⌘
+b.

Using the notation in Algorithm 2, we have the following
observation:

Observation I. t and hmmmk�HHH0sssk,ssski in Algorithm 2 are real.

Proof. Note that f (xxx) = 1
2kAAAxxx� yyyk2

2. Then we have mmmk =

AAAH AAAsssk, so hsssk,mmmki is real.

Since hmmmk�HHH0sssk,ssski is real, we rewrite BBBk as

BBBk = HHH0 + sgn(hmmmk�HHH0sssk,ssski) ũuukũuuH
k , (13)

where ũuuk =
uuukp

hmmmk�HHH0sssk,ssski
and sgn(·) denotes the sign function

such that BBBk holds the same structure as WWW in Theorem 1. So,
instead of solving (12) directly, we first solve J(b) = 0 and
then use Theorem 1 to obtain proxBBBk

l̄k·k1
(vvvk). In this paper, we

solve J(b) = 0 using “SciPy” library in Python.

C. Partial Smoothing
For a 2 (0,1), Algorithm 3 still requires applying many

wavelet transforms, which can dominate the computational
cost. An alternative way is to use the idea proposed in [38]
where one partially smooths the objective and then applies
Algorithm 1. For comparison purposes, we apply Algorithm 1
to the following problem

min
xxx2CN

1
2
kAAAxxx� yyyk2

2 +la ·Sh�kTTT xxxk1
�

| {z }
f (xxx)

+l(1�a)TV(xxx)| {z }
h(xxx)

, (14)

such that each outer iteration needs only two wavelet trans-
forms. For the comparisons in this paper, we used Sh(kxxxk1) =
ÂN

n=1
p

xxx2
n +h with h> 0 so that f (xxx) in (14) is differentiable.

Our numerical experiments compare the performance of such
a partial smoothing approach to methods based on the original
cost function for image reconstruction in CS MRI.3

IV. NUMERICAL EXPERIMENTS

This section studies the performance of our algorithm for
image reconstruction in CS MRI with non-Cartesian sampling
trajectories. Specifically, we consider the radial and spiral
trajectories. Moreover, we also study the robustness of our
algorithm to the choice of g and Max Iter in Algorithms 2
and 3, respectively. Similar to [1], we focus on wavelet and TV
regularizers. We first present our experimental and algorithmic
settings and then show our reconstruction results.
Experimental Settings: We took complex k-space data from
the brain and knee training datasets (one each) in the NYU
fastMRI dataset [39] to generate the simulated k-space data.
We applied the ESPIRiT algorithm [40] to recover the complex
images and then cropped the images to size 256⇥256 to define
the ground-truth images, with maximum magnitude scaled to

3One could instead partially smooth the TV regularizer. However, in our
settings, we found that smoothing kTTT xxxk1 led to better qualifty than TV
smoothing.

0

1

(a) Brain (b) Knee

Fig. 1. The magnitude of the complex-valued ground truth images.

(a) Spiral (b) Radial

Fig. 2. The non-Cartesian MRI trajectories used in this paper.

one. Figure 1 shows the magnitude of the complex-valued
ground-truth images. Following [17], we used 32 interleaves,
1688 readout points, and 12-coils (respectively, 96 radial
projections, 512 readout points, and 12 coils) for the spiral
(respectively, radial) trajectory to define the forward model AAA.
Figure 2 presents the used trajectories in this paper. For clarity,
we plot only every 4th sample of the trajectories. Applying
the used forward model to the ground truth image generated
the noiseless multi-coil k-space data. We added complex i.i.d
Gaussian noise with mean zero and variance 10�2 to all
coils to form the measurements, yyy. The data input SNR was
below 7dB. We also studied a higher data input SNR case of
around 30dB. Our implementation used Python programming
language with SigPy library [41]. The reconstructions ran
on a workstation with 2.3GHz AMD EPYC 7402. Our code
is available on https://github.com/hongtao-argmin/CQNPCS
MRIReco. The supplementary material provides additional
experimental results and a comparison with a Plug-and-Play
reconstruction method using BM3D and a deep denoiser [42].
Algorithmic Settings: For APM, we precomputed the Lips-
chitz constant for all experiments. For CQNPM, we set ak = 1
and g = 1.7. Denote by S-APM (respectively, S-CQNPM)
when APM (respectively, CQNPM) is used to solve (14). We
chose the step-size in S-APM using a backtracking strategy
[43]. Moreover, we also compared our method with primal-
dual (PD) methods [44]. The tradeoff parameters l and a were
chosen to reach the highest peak signal-to-noise ratio (PSNR)
when running enough iterations of APM. We set h = 10�5

in our experiments. The maximal number of iterations and

https://github.com/hongtao-argmin/CQNPCS_MRIReco
https://github.com/hongtao-argmin/CQNPCS_MRIReco
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Fig. 3. Cost values versus iteration (top) and CPU time (bottom) of the brain
image with regularizer h(xxx) = kTTT xxxk1 and l = 5⇥ 10�4 for a left invertible
wavelet transform TTT with 5 levels. Acquisition: radial trajectory with 96
projections, 512 readout points, and 12 coils.

tolerance in Algorithm 3 are set to be 20 and 10�6 for both
CQNPM and APM.

A. Radial Acquisition MRI Reconstruction
Figures 3 and 4 show the performance of Algorithm 1

for the wavelet based reconstruction of the brain image and
the comparison with APM [11] and PD [44]. Here, we used
Theorem 1 to compute the WPM. Clearly, CQNPM converged
faster than APM and PD in terms of iterations. Compared with
the cost of computing the proximal mapping, the additional
cost of computing WPM with our method is insignificant.
Figures 3 and 4 show that the computational costs of CQNPM
and APM per iteration are similar. The comparison of PSNR
versus CPU time in Figure 4 also shows that CQNPM reached
a higher PSNR with less CPU time, illustrating the fast
convergence of CQNPM. The reconstructed images at 3, 10,
13, and 16th iteration illustrate that CQNPM yielded a clearer
image than APM for the same number of iterations. Since
PD led to a much lower PSNR than APM, we do not present
the reconstructed images of PD. Similar observations apply
to the knee image and the related results are provided in the
supplemental material.

We also studied the performance of our algorithm when
using both wavelet and TV regularizers. Here, we used
Algorithm 3 to compute the the proximal mapping and
WPM. Since ADMM is a classical method for (2) with
h(xxx) =akTTT xxxk1+(1�a)TV(xxx), we include a comparison with
ADMM. Moreover, we also studied the performance of the
partial smoothing technique. Although PD does not require
any inner iteration, unlike ADMM, APM, and our method,
our method is still faster than PD in terms of iterations and
CPU time.

Figures 5 and 6 present the results for the reconstruction of
the brain image. CQNPM reduced the cost faster than APM
in terms of iterations and CPU time. Although we solved (14)
instead of (2) for the partial smoothing method, the cost is still

computed with (2). Surprisingly, in this setting, we see that,
for the cost values versus iterations, S-APM (respectively, S-
CQNPM) converged similar to APM (respectively, CQNPM)
in terms of iterations. However, from the cost values versus
CPU time plot, S-CQNPM converged faster than CQNPM,
as expected since the partial smoothing method requires only
two wavelet transforms per outer iteration. However, S-APM
converged slower than APM in terms of CPU time because
S-APM requires applying a line search to choose the step-
size, increasing the computational cost. Although CQNPM/S-
CQNPM require an iterative method to solve the WPM, Sec-
tion IV-D demonstrated that the WPM can be solved inexactly,
and the computation for solving the WPM is relatively inex-
pensive compared to executing AAAxxx in CS MRI reconstruction.
Thus, CQNPM/S-CQNPM converged faster than ADMM/PD
both in terms of iteration numbers and in CPU time. Note
that ADMM requires solving a least-squares problem at each
iteration, which involves applying AAAxxx multiple times, leading
to significantly slower convergence in terms of CPU time.

The PSNR versus CPU time plot in Figure 6 also demon-
strates the fast convergence of CQNPM and S-CQNPM. Com-
pared with the previous experiments that only used a wavelet
regularizer, we see an improved PSNR here, confirming the
benefit of using both wavelet and TV regularizers. The re-
constructed images at 3, 10, 13, and 16th iteration for each
method4 illustrate that the partial smoothing method works
as well as the nonsmoothing one. In summary, the proposed
method converged faster than other methods in terms of
iterations and CPU time, and S-CQNPM is the best algorithm
for (2) in this setting. We also tested our algorithm on the knee
image and provided the results in the supplementary material.

B. Spiral Acquisition MRI Reconstruction

This part studies the reconstruction with spiral acquisition
that used 32 interleaves, 1688 readout points, and 12 coils.
Figures 9 and 10 show the results of the knee image with
wavelet and TV regularizers. The trends are similar to the
radial acquisition case. Note that CQNPM reduced the cost
values faster than S-CQNPM in terms of iterations and CPU
time in this setting. However, S-CQNPM reached a higher
PSNR than CQNPM with same CPU time. We provided the
reconstruction of the brain and knee images with wavelet reg-
ularizer and the brain image with wavelet and TV regularizers
in the supplementary material.

C. The Choice of g

We tried several different g values to study how g affects
the convergence of CQNPM. We reconstructed the brain
image with wavelet and TV regularizers and radial acquisition.
Figure 7 presents the results that show that CQNPM is quite
robust to different g values, and g = 1.7 worked slightly better
than the others. So we simply set g = 1.7 for all experiments.

4We do not show the reconstructed image of ADMM since it yielded a
much lower PSNR than other methods.
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D. The Choice of Max Iter in Algorithm 3

Following the setting used in Section IV-C, we studied how
the choice of Max Iter in Algorithm 3 affects the converge
of CQNPM. Figure 8 presents the cost values versus iteration
with different values of Max Iter. Clearly we see that CQNPM
is quite robust to the choice of Max Iter. However, a small
Max Iter (e.g., Max Iter= 10) can slightly increase the cost
and Max Iter= 20,50 converged faster than other vaules. In
our experiments, we found that Max Iter= 20 is sufficient.

E. Reconstruction with High Data Input SNR

This part studies the reconstruction for complex additive
Gaussian noise with mean zero and lower variance 4⇥10�5,
yielding around 30dB data input SNR. Figure 11 displays
the reconstructed results using spiral acquisition and h(xxx) =
akTTT xxxk1 +(1�a)TV(xxx). The reconstructed images are much
clearer than those in the low data input SNR cases. Moreover,

the convergence trends of different algorithms are similar to
those observed in low data input SNR reconstructions. The
supplementary material provides the reconstructed results of
the knee image that align with the observations made from
the brain image presented here.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes complex quasi-Newton proximal meth-
ods for solving (2) that led to faster convergence than APMs.
By using the structure of BBBk, we develop efficient approaches
for computing the WPM by considering wavelet and TV
regularizers. Compared with computing the proximal mapping
in APMs, i.e., BBBk = IIIN , the increased computational cost in
computing the WPM is insignificant, as illustrated by our com-
parisons in terms of CPU time. CQNPM is appealing for large-
scale problems because CQNPM requires fewer iterations than
APMs to converge, reducing the times of computing — f (xxx)
that it is expensive in large-scale settings. Interestingly, in our
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6 .

setting, we found the partial smoothing method worked pretty
well when both wavelet and TV regularizers are used. So the
partial smoothing approach may be a good method for solving
problems with two nonsmooth terms. To adapt CQNPM to
other regularizers, one must find an efficient approach to
address the WPM for the chosen regularizer to preserve the
computational efficiency.

Clearly, BBBk plays an important role in our algorithm and a
more accurate BBBk can accelerate the convergence further. Since
the Hessian matrix in CS MRI is known, i.e., AAAH AAA, we plan
to learn a fixed weighting BBB to approximate AAAH AAA accurately
for future work. However, BBB must be easy to invert so that
BBB should have some special structures, e.g., BBB = DDD±UUUUUUH ,
and finding such a BBB should be computationally cheap since
AAA is different from each acquisition because the sensitivity
mapping is patient dependent. Moreover, with such a fixed
BBB, we can adopt the accelerated manner used in APMs for
Algorithm 1 and obtain an even faster algorithm than the one
presented here.
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APPENDIX A
PROOF OF PROPOSITION 1

Similar to [12] for the real case, one can prove the following
relations for complex numbers x,y 2 C

p
|x|2 + |y|2 = max

p1,p22C

�
¬(p⇤1x+ p⇤2y) : |p1|2 + |p2|2  1

 

|x|= max
p2C

{¬(p⇤x) : |p| 1}

where ⇤ denotes the conjugate operator and ¬(·) represents
an operator to take the real part. With these relations and the

definition of TV functions, we can rewrite TV(xxx) and kTTT xxxk1
as

TV(xxx) = max
(PPP,QQQ)2P

¬
n

vec(L (PPP,QQQ))H xxx
o
,

kTTT xxxk1 =max
zzz2Z

¬
n

zzzH TTT xxx
o
,

where P =P1 (respectively, P2) for TViso (respectively, TV`1 ).
Hence, we represent (8) as

min
xxx2CN

max
zzz2Z

(PPP,QQQ)2P

kxxx� vvvkk2
BBBk
+2l̄g(xxx,zzz,PPP,QQQ), (15)

where

g(xxx,zzz,PPP,QQQ) = ¬
n

ahTTT xxx,zzzi+(1�a)vec(L (PPP,QQQ))H xxx
o
.

Reorganizing (15), we get

min
xxx2CN

max
zzz2Z,

(PPP,QQQ)2P

kxxx�wwwk(zzz,PPP,QQQ)k2
BBBk
�kwwwk(zzz,PPP,QQQ)k2

BBBk
,

(16)
where

wwwk(zzz,PPP,QQQ) = vvvk� l̄BBB�1
k

⇣
aTTT H zzz+(1�a)vec(L(PPP,QQQ))

⌘
.

Since (16) is convex in xxx and concave in (zzz,PPP,QQQ), we
interchange the minimum and maximum and then get

max
zzz2Z

(PPP,QQQ)2P

min
xxx2CN

kxxx�wwwk(zzz,PPP,QQQ)k2
BBBk
�kwwwk(zzz,PPP,QQQ)k2

BBBk
.

(17)
Note that xxx only appears in the first term of (17) so that the

optimal solution of the minimum part is

xxx⇤ = wwwk(zzz,PPP,QQQ). (18)

Substituting (18) into (17), we get the following dual problem
that contains only unknown dual variables (zzz,PPP,QQQ)

(zzz⇤,PPP⇤,QQQ⇤) = argmin
zzz2Z,

(PPP,QQQ)2P

kwwwk(zzz,PPP,QQQ)k2
BBBk
.

(19)

After solving (19), the primal variable update is xxxk+1 =
wwwk(zzz⇤,PPP⇤,QQQ⇤). This completes the proof.

APPENDIX B
PROOF OF LEMMA 1

Denote by h(zzz,PPP,QQQ), kwwwk(zzz,PPP,QQQ)k2
BBBk

. Applying the chain
rule, we get

—h(zzz,PPP,QQQ) =�2l̄


aTTT
(1�a)LT

�
wwwk(zzz,PPP,QQQ).
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Now, we compute the Lipschitz constant of h(zzz,PPP,QQQ). For
every two pairs of (zzz1,PPP1,QQQ1) and (zzz2,PPP2,QQQ2), we have

k—h(zzz1,PPP1,QQQ1)�—h(zzz2,PPP2,QQQ2)k

= 2l̄2
����


aTTT

(1�a)LT

�
BBB�1

k

h
aTTT H (1�a)L

i

[(zzz1,PPP1,QQQ1)� (zzz2,PPP2,QQQ2)]

����

 2l̄2
���a2TTT H TTT +(1�a)2LT L

���
���BBB�1

k

���
��� [(zzz1,PPP1,QQQ1)� (zzz2,PPP2,QQQ2)]

���

 2l̄2(a2kTTTk2 +(1�a)2kLk2)smin
���
h
(zzz1,PPP1,QQQ1)� (zzz2,PPP2,QQQ2)

i��� ,

where smin is the smallest eigenvalue of BBBk. With the proof of
[12, Lemma 4.2], we know kLk=

p
8 such that the Lipschitz

constant of h(zzz,PPP,QQQ) is Lc = 2sminl̄2(a2kTTTk2 + 8(1�a)2).
This completes the proof.
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Fig. 10. First row: the ground truth image and PSNR values versus CPU time; second to sixth row: the reconstructed knee images at 3, 10, 13, and 16th
iteration with Figure 9 setting. We did not show the reconstructed image of ADMM since it yielded a much lower PSNR than other methods. The seventh and
eighth rows represent the zoomed-in regions and the corresponding error maps (⇥5) of the 16th itertion reconstructed images with PD ! APM ! S-APM
! CQNPM ! S-CQNPM.
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iteration with spiral acquisition and h(xxx) = akTTT xxxk1 +(1�a)TV(xxx) and the zoomed-in regions of the 16th iteration reconstruction. The parameters were
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Fig. S.1. Error maps (⇥5) of the zoomed-in regions of the 16th iteration
reconstructed images in Fig. 6 of the main manuscript. From left to right, first
row: PD ! APM ! S-APM; second row: CQNPM ! S-CQNPM.

S.I. RADIAL ACQUISITION MRI RECONSTRUCTION

We provided the additional results with radial trajectory
here. Figure S.1 describes the error maps of the zoom in
regions of Fig. 6 in the main manuscript. Figures S.3 and S.4
present the results of using wavelet regularizer with different
algorithms for the knee image. Clearly, we observe similar
trends as we tested on the brain image.

Figures S.5 and S.6 display the results of using wavelet
and TV reguarizers for the knee image. Our method again
outperforms other algorithms. Figure S.5 shows that APM and
CQNPM reduced the cost values slightly faster than S-APM
and S-CQNPM in terms of iterations and CPU time, which
is slightly different from our test on brain image. However,
it is unsurprising because S-APM and S-CQNPM solved the
partial smoothing cost function, rather than original one, yet
we still computed the original non-smooth cost.

⇥5

Fig. S.2. Error maps (⇥5) of the zoomed-in in regions of the 16 reconstructed
images in Fig. 11 of the manuscript. From left to right, first row: APM !
S-APM ! CQNPM; second row: S-CQNPM.

S.II. SPIRAL ACQUISITION MRI RECONSTRUCTION

We provided the reconstruction with spiral acquisition that
used 32 interleaves, 1688 readout points, and 12 coils.

Figure S.2 describes the error maps of the zoomed-in
regions in Fig. 11 of the main manuscript. Figures S.7 to S.10
present the results of the brain and knee images with wavelet
regularizer. Figures S.11 and S.12 show the results of the
brain image with wavelet and TV regularizers. Figure S.13
describes the error maps of the zoom in regions of Figure S.12.
Figure S.14 depicts the knee image with wavelet and TV
regularizers on 30dB input SNR. Clearly, the trends are similar
to the radial acquisition described in our paper.

S.III. COMPARISON WITH PLUG-AND-PLAY

This section compares the reconstruction performance be-
tween wavelet and total variation regularizers, and Plug-
and-Play (PnP) with a deep denoiser prior [1] and BM3D
denoiser [2]. To obtain the deep denoiser prior, we employed
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Fig. S.3. Cost values versus iteration (top) and CPU time (bottom) of
the knee image with regularizer h(xxx) = kTTT xxxk1 and l = 5⇥ 10�4 for a left
invertible wavelet transform TTT with 5 levels. Acquisition: radial trajectory
with 96 projections, 512 readout points, and 12 coils. The parameter l was
10�3.

the DnCNN [3] denoiser, training it on the brain dataset as
described in [4]. We trained on three different noise variance
s = {0.1,1,5} yielding three different DnCNN denoisers. For
testing, we selected one brain image from the test dataset and
generated the k-space data using the spiral trajectory outlined
in the manuscript. We then added complex i.i.d. Gaussian
noise, resulting in a ⇠ 30dB data input SNR.

In the reconstruction process, we applied 35 iterations for
both APM and CQNPM. For the PnP, we continued the
iterations until the change in PSNR between two consecutive
iterations was less than 0.01dB. For the PnP with the DnCNN
denoiser, we chose the DnCNN trained with s = 0.1 as
it yielded the best performance. Figure S.15 presents the
reconstructed images that achieved the highest PSNR during
the reconstruction process for each method. Here, PnP-BM3D
and the wavelet and total variation regularizers led to higher
SNR images than PnP with a deep denoiser prior. As described
in [5], the deep denoiser may suffer from a noise scaling
problem, which may explain its inferior SNR performance
observed here. Further investigation of this issue is reserved
for future work.
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Fig. S.4. First row: the groundth image and PSNR values versus CPU time; second to third row: the reconstructed knee images at 3, 10, 13, and 16th
iteration with Figure S.3 setting; fouth row: the zoomed-in regions and the corresponding error maps (⇥5) of the 16th iteration reconstructed images.
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Fig. S.5. Cost values versus iteration (top) and CPU time (bottom) of the knee
image with regularizer h(xxx) = akTTT xxxk1 +(1�a)TV(xxx) and same acquisition
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2 .



4

GT

(a) (a)

0 4 8 12
20

25

30

CPU Time (Seconds)

PS
N

R S-CQNPM

CQNPM

APM

S-APM

PD

iter. = 3

21.09dB

10

25.52dB

13

26.26dB

16

26.77dB I

PD

22.16dB 27.42dB 28.69dB 29.74dB II

A
PM

22.17dB 27.42dB 28.68dB 29.71dB III

S-
A

PM

24.69dB 30.57dB 31.16dB 31.61dB IV

C
Q

N
PM

24.7dB 30.47dB 30.04dB 30.47dB VS-
C

Q
N

PM

I II III IV V

⇥5
I II III IV V

Fig. S.6. First row: the ground truth image and PSNR values versus CPU time; second to sixth row: the reconstructed knee images at 3, 10, 13, and 16th
iteration with Figure S.5 setting. We did not show the reconstructed image of ADMM since it yielded a much lower PSNR than other methods. The seventh
and eighth rows represent the zoomed-in regions and the corresponding error mapps (⇥5) of the 16th iteration reconstructed images with PD ! APM !
S-APM ! CQNPM ! S-CQNPM.
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Fig. S.7. Cost values versus iteration (top) and CPU time (bottom) of the brain
image with regularizer h(xxx) = kTTT xxxk1 and l= 10�3 for a left invertible wavelet
transform TTT with 5 levels. Acquisition: spiral trajectory with 32 intervals, 1688
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Fig. S.8. First row: the ground truth image and PSNR values versus CPU time; second to third row: the reconstructed brain images at 3, 10, 13, and
16th iteration by APM and CQNPM methods with Figure S.7 setting; fourth row: the zoomed-in regions and the corresponding error maps (⇥5) of the 16th
iteration reconstructed images.
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Fig. S.9. Cost values versus iteration (top) and CPU time (bottom) of the
knee image with same regularizer and acquisition as Figure S.7. The parameter
l = 2⇥10�3.
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Fig. S.10. First row: the groundth image and PSNR values versus CPU time; second to third row: the reconstructed knee images at 3, 10, 13, and 16th
iteration with Figure S.9 setting; fouth row: the zoomed-in regions and the corresponding error maps (⇥5) of the 16th iteration reconstructed images.
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Fig. S.11. Cost values versus iteration (top) and CPU time (bottom) of
the knee image with regularizer h(xxx) = akTTT xxxk1 + (1�a)TV(xxx) and same
acquisition as Figure S.7. The parameters l and a were 10�3 and 1
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Fig. S.12. First row: the ground truth image and PSNR values versus CPU time; second to sixth row: the reconstructed brain images at 3, 10, 13, and 16th
iteration with Figure S.11 setting and the zoomed-in regions of the 16th iteration reconstruction. We did not show the reconstructed image of ADMM since
it yielded a much lower PSNR than other methods.
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Fig. S.13. Error maps (⇥5) of the zoomed-in regions of the 16 reconstructed
images in Figure S.12. From left to right, first row: PD ! APM ! S-APM;
second row: CQNPM ! S-CQNPM.
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Fig. S.14. Performance of different algorithms with h(xxx) = akTTT xxxk1 +(1�a)TV(xxx) for the spiral acquisition and ⇠ 30dB data input SNR. The parameters
l = 2⇥10�4 and a = 10�4. First row: the ground truth image and PSNR values versus CPU time; second to fifth row: the reconstructed knee images at 3,
10, 13, and 16th iteration with Figure S.5 setting. The sixth and seventh rows represent the zoomed-in regions and the corresponding error mapps (⇥5) of
the 16th itertion reconstructed images with APM ! S-APM ! CQNPM ! S-CQNPM.
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