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This paper considers the problem of optimally designing the projection matrix Φ for a
certain class of signals which can be sparsely represented by a specified dictionary Ψ. The
optimal projection matrix is proposed to minimize the distance between the Gram matrix
of the equivalent dictionary ΦΨ and a set of relaxed Equiangular Tight Frames (ETFs). An
efficient method is derived for the optimal projection matrix design with a given Gram
matrix. In addition, an extension of projection matrix design is derived for the scenarios
where the signals cannot be represented exactly sparse in a specified dictionary. Simu-
lations with synthetic data and real images demonstrate that the obtained projection
matrix significantly improves the signal recovery accuracy of a system and outperforms
those obtained by the existing algorithms.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Compressive sensing, also known as compressed sensing
(CS), has attracted a great deal of researchers' attention in
signal processing community and applied mathematics
since its introduction at the early of this century [1–3].
Excellent comments on the development of CS in the sig-
nal processing community can be found in [4–6].

CS framework involves a class of mathematic problems
of reconstructing a signal1 xARN�1 from its limited linear
observations yARM�1 obtained through the projection
matrix ΦARM�N:

y¼Φx ð1Þ

with M⪡N. There are infinite number of candidate signals
,

e signal with finite-
~x for which y¼Φ ~x because the number of the measure-
ments M is smaller than the dimension N of the signal.
Additional conditions about x should be assumed to solve
such an underdetermined linear system y¼Φx for a
unique x. The CS framework assumes the signal x can be
represented as a linear combination of (a small number of)
columns from ΨARN�L:

x¼Ψθ

where Ψ is called a dictionary and θARL�1 is referred to as
a coefficient vector. A dictionary is called redundant or
overcomplete if L4N. All dictionaries considered in this
paper are assumed to be overcomplete. A lot of works
[7–11] have shown that most of the natural signals can be
expressed by few atoms from a properly chosen dictionary.

The signal x is said to be S-sparse in Ψ if JθJ0 ¼ S. Here
JθJ0 denotes the number of non-zero elements in θ.
Strictly speaking, J � J0 is not a true norm,2 as the
2 For simplicity, l0 is used to represent the zero norm in this paper.
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definition of a true lp-norm with pZ1 of a vector v is

JvJp9
XN
k ¼ 1

jvðkÞjp
 !1=p

where vðkÞ is the k-th element3 of v.
Assuming θ is sparse (which means S is small compared

to L), the CS system recovers θ (and hence x) by resolving
the following optimization problem:

min
θ

JθJ0

s:t:y¼Dθ

D9ΦΨ ð2Þ
Under some conditions [6], the NP-hard problem (2) can
be solved efficiently with theoretical guarantee by several
numerical algorithms, such as basis pursuit (BP) [12],
orthogonal matching pursuit (OMP) [13], least absolute
shrinkage and selection operator (LASSO) [14] and other
algorithms proposed in [10,15–18].

One of the important concepts in CS is the mutual
coherence μðDÞ [6], which denotes the coherence between
any two columns of the equivalent dictionary D. It has
been proved in [11] that an S-sparse signal x can be per-
fectly recovered from the observed signal y¼Dθ through
(2) if the following condition holds:

So1
2

1þ 1
μmxðDÞ

� �
; ð3Þ

where μmxðDÞ represents the maximal mutual coherence.
Noting that (3) indicates the set of signals that can be

recovered exactly by solving (2), one may design Φ such that
μmxðDÞ is as small as possible so that the CS system can
recover the signal x with a relatively small measurements y.
In [19], μmxðDÞ was minimized directly by a subgradient
optimization approach but has extremely high computational
complexity. Instead of minimizing μmx directly, Elad [20]
suggested reducing the average mutual coherence μavðDÞ and
proposed an iterative algorithm based on shrinkage operation
and the singular value decomposition (SVD). The simulations
carried out in [19] show that the method proposed in [20]
yields a little inferior performance in terms of signal recovery
accuracy than their method.

In CS framework, it is desired to find an optimal pro-
jection matrix that the correlation between any two dif-
ferent columns of the equivalent dictionary is minimized.
The direct idea is to check the Gram matrix. As defined by
G9DT D, 4 the Gram matrix for an ideal equivalent dic-
tionary is an identity matrix. Based on this desirableness,
an approximate solution is obtained in [21] by solving

min
Φ

JΣ2
Ψ�Σ2

ΨΓ
T ΓΣ2

Ψ J2F ð4Þ

where J � JF denotes the Frobenius norm and Ψ¼
UΨ ΣΨ 0½ �VT

Ψ is an SVD of the dictionary Ψ, and Γ¼ΦUΨ.5
3 MATLAB notations are used in this paper. In this connection, Q ði; jÞ
means the ði; jÞ-th element of matrix Q , while Q ðk; : Þ and Q ð: ; kÞ denote
the k-th row and column vector of Q , respectively.

4 T denotes the transpose operator, and this notation will be
assumed in the rest of the paper.

5 In this paper, 0 denotes a matrix or vector with all of its elements
equal to zero.
An iterative optimization method was developed to solve
(4) in [21] with high efficiency. However, this approach
does not have a clear physical meaning as it has lost the
original purpose of making the Gram matrix as close to the
identity matrix as possible, and hence, its performance can
be improved. Recently, in [22], the optimal projection
matrix was investigated by solving the following problem:

min
Φ

JI�ΨT ΦT ΦΨJ2F ð5Þ

A closed-form solution was given in [22] with the
assumption that the dictionary matrix has full row rank.

Note that the methods proposed in [19,20] cannot
reach the optimal solution for μmx and μav, respectively.
Researchers found (3) is a worst-case bound and cannot
reflect the average signal recovery performance. So the
researchers tend to find a framework to control the values
of μmx and μav simultaneously and then Equiangular Tight
Frames (ETF) for projection matrix design is utilized in
these years [23]. See also [24–26]. In [26], a gradient
descent algorithm was developed to update the projection
matrix with a target Gram. In this work, a strategy similar
to [21] is developed for addressing this problem. The
proposed algorithm denoted as Algorithm 2 has a fast
convergence than the gradient in [26] in terms of the
values of μav and μmx. In addition, the proposed algorithm
can also be perfectly used to solve (5).

It should be noted that most of the existing projection
design methods assuming the signal is exactly sparse,6 e.g.
[19–22,25–27]. In order to relax this constraint on the
signal, a new objective function is proposed for optimal
projection matrix design. In the case when the signal is not
exactly sparse (which is true for most of practical signals,
e.g., images), the recovery performance can be improved
by using the proposed projection matrix.

The main contribution of this paper is two-fold:

� An iterative alternating minimization algorithm is pro-
posed for reducing the coherence of the equivalent
dictionary and then yields an optimal projection matrix.
The simulation results illustrate that the proposed
method yields a projection matrix which has a better
performance in terms of signal recovery accuracy than
the methods in [26].

� An innovated cost function is given to design Φ when
the signal has sparse representation error. As can be
seen, such a projection matrix can significantly improve
the signal recovery accuracy and outperforms the
existing approaches when the signal cannot be repre-
sented exactly sparse.

The rest of this paper is arranged as follows. An
equivalent cost function for (5) is shown in Section 2. It
should be noted that the cost function is different from the
one proposed in [21,22,26]. Due to the special structure, a
novel algorithm is developed to efficiently solve the opti-
mization problem. The detailed discussions about this
6 In this paper, we call x is exactly sparse in Ψ means there exists
some θ with JθJ0 ¼ S exactly. In this case, we say there is no sparse
representation error of x.
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novel algorithm can be found in Section 3. An extension of
designing projection matrix to the case with sparse
representation error is shown in Section 4. Detailed dis-
cussions about how this cost function is developed and
how this problem is efficiently solved can be also found in
Section 4. In Section 5, simulations are given to illustrate
the effectiveness and efficiency of the methods shown in
this paper. The conclusions are given in Section 6 to end
this paper.
7 In the case of Gt ¼ I, this problem is equivalent to (5).
2. Preliminaries and problem formulation

Following [20], we define the maximal mutual coherence
of the matrix D as

μmx Dð Þ9 max
1r ia jr L

jDð: ; iÞT Dð: ; jÞj
JDð: ; iÞJ2 JDð: ; jÞJ2

: ð6Þ

Denote

Sc9diagðGð1;1Þ�1=2⋯Gðk; kÞ�1=2⋯GðL; LÞ�1=2Þ

Then, the Gram matrix of D ¼DSc, denoted as G , is nor-
malized such that Gðk; kÞ ¼ 1; 8k. Obviously, μmxðDÞ ¼
maxia jjGði; jÞj. The lower and upper bounds of μmxðDÞ
are [23]

μrμmxðDÞr1

with μ9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�M

MðL�1Þ
q

. The average mutual coherence used in
[20] is given by

μav Dð Þ9
P

8 ði;jÞAHav
jGði; jÞj

Nav
ð7Þ

where Nav is the number of entries in the index set
Hav9fði; jÞ: jGði; jÞjZζ&ia jg with 0rζo1 that we can
choose as desired. Both μav and μmx are used as the measures
of projection matrix design in this paper.

Frames are an important concept in signal analysis. We
refer the reader to [29,30] for the detailed discussions on
frames. Here, we only introduce two important classes of
frames: tight frames and ETFs, which are necessary for our
later analysis. The sequence of column vectors Dð: ; jÞ of
matrix D is a frame for the Hilbert space RN if there exist
two constants 0oαrβoþ1 such that

αJvJ2r JDT vJ2rβJvJ2 ð8Þ

for all vARN�1. Such a frame is called α-tight if α¼ β in (8).
A normalized frame fDð: ; jÞg ði:e:; JDð: ; jÞJ2 ¼ 1; 8 jÞ is

said to be equiangular if

jDð: ; iÞT Dð: ; jÞj ¼ c; 8 ia j

where c is a positive constant. As shown in [23], a matrix D
with JDð: ; jÞJ2 ¼ 1; 8 j achieves μmxðDÞ ¼ μ if and only if
fDð: ; jÞg is ETF, moreover, μmxðDÞ ¼ μ can only hold if
LrMðMþ1Þ=2. It is clear that the orthogonal bases form a
special class of ETFs. An ETF has a very nice average mutual
coherence behavior and has been used in optimal dic-
tionary design [24]. In addition, such an idea was also
extended to the optimal projection matrix design [25,26].
The projection matrix design problem based on the ETF
structure can be formulated as [25,26] 7

min
Gt ;Φ

JGt�ΨT ΦT ΦΨJ2F

GtAHζ

Hζ ¼ fGt jGt ¼ GT
t ;diagðGtÞ ¼ 1;max

ia j
jGtði; jÞjrζg ð9Þ

where ζ is a parameter to control the maximal non-
diagonal value in Gt , diag ðGtÞ denotes the diagonal entries
of Gt and 1 represents a vector of proper dimension with
its elements all equal to 1. It can be found that (9) is a
highly nonconvex problem. The alternating method has
been widely used to address such problems [23,24,26]. The
basic idea is to update Φ and Gt alternatively. Firstly, the
projection matrixΦ is fixed and Gt is updated. Secondly, Gt

is fixed and the projection matrix Φ is updated. This pro-
ceeding will be repeated until a stop criterion is reached.
At the first stage, we directly project the Gram matrix of
ΦΨ to the set Hζ . The key problem is the second step.
Abolghasemi et al. [26] proposed a gradient descent
method to address the problem in this step. For con-
venience, the procedures of solving (9) in [26] is denoted
as Algorithm 1 and shown as follows.

Algorithm 1. AFS.
Initialization:
Sparsify dictionary matrix Ψ, initialize Φ0 to a random matrix, and

the number of iterations: Iterouter.
Output:
Projection matrix Φ.
Iteration:
1: Φ’Φ0

2: for l¼1 to Iterouter do
3: ðG’ΨT ΦT ΦΨÞ
4: Update Gt:
5: diagðGt Þ’1
6: for all ia j do

7: Gt ði; jÞ’
Gði; jÞ if jGði; jÞjrζ

ζ � signðGði; jÞÞ otherwise

(

where sign ð�Þ is a sign function.
8: end for
9: Update Φ:

10: Φ’ ~Φ ¼ arg min
Φ

JGt�ΨT ΦT ΦΨJ2F
ð10Þ

11: end for
Note that the gradient descent algorithm can only
reach a local minimum for (10). Moreover, as pointed out
by the authors of [26], the accuracy of the solution for (10)
will affect the final performance in terms of signal recov-
ery accuracy. Hence, in order to reach a good solution, a
large number of iterations is needed for the gradient
descent algorithm while the step size must be chosen
carefully. Meanwhile, the complexity of the algorithm is
increased. According to these observations, a new algo-
rithm is proposed in this paper which can yield a better
solution for (10) with a much lower complexity when the
dimension of the problem is not very large. In order to
carry out the proposed algorithm, some manipulations
should be taken to cast (10) to a processable equation. The
related manipulations are shown as follows.
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Without loss of generality, assume that the rank and
the SVD of ΨARM�L are N and

Ψ¼UΨ
ΣΨ 0
0 0

� �
VT

Ψ;

respectively. So (10) can be casted to

VT
ΨGtVΨ� ΣΨ 0

0 0

� �
ΦT Φ

ΣΨ 0
0 0

� �����
����
2

F

¼
G

11
t G

12
t

G
21
t G

22
t

2
4

3
5� ΣΨ 0

0 0

� � ΦT
1

ΦT
2

2
4

3
5 Φ1 Φ2

h i ΣΨ 0
0 0

� �������
������
2

F

3 G
11
t �ΣΨΦ

T
1 Φ1ΣΨ

��� ���2
F

¼ G
11
t �ΩT Ω

��� ���2
F

Due to these manipulations, we conclude that the solution
of (10) is equivalent to solving

min
Ω

G
11
t �ΩT Ω

��� ���2
F

ð11Þ

In the next section, an efficient method is derived to
solve (11).
3. An algorithm for the optimum projection matrix

In this section, we first investigate (11) which is the
main part in the optimum projection matrix design pro-
blem. As to be seen, a novel iterative method is proposed
to solve (11). Based on this method, we propose a new
algorithm for designing optimum projection matrix.

3.1. An efficient method for solving (11)

The strategy is to update Ω row by row, which has also
been used in [7,21]. RewriteΩT Ω¼Piωiω

T
i with ωi being the

i-th row of Ω. Now, (11) in terms of ωj can be reformulated as

ϱðωjÞ ¼ JG
11
t �

X
ia j

ωiω
T
i �ωjω

T
j k2F ¼ JEj�ωjω

T
j J2F ð12Þ

where Ej ¼ G
11
t �Pia jωiωT

i . The derivative of ϱðωjÞ with
respect to ωj is

∂ϱðωjÞ
∂ωj

¼ �4Ejωjþ4ωjω
T
j ωj ð13Þ

The optimal ωj should satisfy ∂ϱðωjÞ
∂ωj

¼ 0, which leads to
�4Ejωjþ4ωjω

T
j ωj ¼ 0. Equivalently, we have

Ejωj ¼ Jωj J22ωj ð14Þ
According to (14), we know ωj and its energy are one of the
eigenvector and the corresponding eigenvalue of Ej, respec-
tively. Additionally, the eigenvalue decomposition (ED) of Ej

can be expressed as

Ej9U jΛjU
T
j ¼

X
k

λkjukjuT
kj

where Λj ¼ diagðλ1j;…; λkj;…; λNj Þ with λkjZλðkþ1Þj; 8k, λkj
and ukj are the k-th eigenvalue and the corresponding
eigenvector of Ej. According to (14), the optimal solution for
(12) is ωj ¼
ffiffiffiffiffiffi
λ1j

p
u1j if λ1j is bigger than 0. In practical, this

procedure will be repeated until a given number of iterations
is reached. This derivative forms the foundation of our
method for solving (11), see Algorithm 2 with steps 10–18.

After obtaining Ω,Φ1 is updated by ΩΣ�1
Ψ . Note that Φ2

has nothing to do with the objective function of (10) and is
fixed with the initial one. To summary, Φ is obtained by

Φ¼ ΩΣ�1
Φ Φ2

h i
UT

Ψ

3.2. Optimum projection matrix design

The same alternating framework as Algorithm 1 is used
to handle (9) in this subsection. For convenience, the
proposed algorithm for projection matrix design is listed
in a pseudocode style and shown in Algorithm 2.

Algorithm 2. Optimum projection matrix design.
Initialization:
Sparsify dictionary matrix Ψ, initialize Φ0 to a random matrix, and

the number of iterations: Iterouter and Iterinner.
Output:
Projection matrix Φ.
Iteration
1: Φ’Φ0

2: for l¼1 to Iterouterdo
3: Gt’ΨT ΦT ΦΨ
4: Update Gt:
5: diagðGt Þ’1
6: for all ia j do

7: Gt ði; jÞ’
Gt ði; jÞ if jGt ði; jÞjrζ

ζ � signðGt ði; jÞÞ otherwise

(

8: end for

9: Update Φ: solving min
Φ

JGt�ΨT ΦT ΦΨJ2F
10: for k¼1 to Iterinner do
11: for J¼1 to M do
12: Compute EJ

13: Compute λ1J and u1J of EJ

14: if λ1J40 then
15: ωJ’

ffiffiffiffiffiffi
λ1J

p
u1J

16: end if
17: end for
18 end for
19: Φ1’ΩΣ�1

Ψ

20: Φ’ΦUT
Ψ

21: end for

Comment 3.1:

� The parameter ζ in (9) is set to the lower bound of μmx,
i.e., μ9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�M

LðM�1Þ
q

. As shown in [26], different ζ can yield
different results. Setting ζ to this lower bound, even it is
not the optimal value, can also receive a moderate
result. Thus the lower bound is used throughout
this paper.

� It should be pointed out that all of the diagonal entries
in Gt are set to 1 directly (i.e., we do not normalize the
equivalent dictionary during each iteration). The
experiments show that the algorithm can also work
well without the normalization stage.

� The proposed method for solving (11) shares the same
concept as K-SVD. However, as illustrated in step 10 of
Algorithm 2, we repeat the iterative procedure for
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several more times. We find this step can make the
algorithm more robust, that is, any initial value Φ can
converge to the same objective value. Typically, simula-
tions show that Iterinner ¼ 2 always yields a satisfactory
result. Algorithm 2 has a faster convergence than the
gradient algorithm shown in [26] in terms of μav, μmx

versus iteration number. It should be noted that the
proposed Algorithm 2 of problems8 which have the
form of ϱðΩÞ ¼ JG0�ΩT ΩJ2F . In [22], the authors
proposed a closed-form solution for (11) when Gt ¼ I.
We find Algorithm 2 can converge to the same solution
as suggested in [22] when Gt ¼ I. We also show some
experiments to indicate this concern. However, the
strict proof is left for the future work.

� Our algorithm is an iterative method. The main com-
plexity in Algorithm 2 for each iteration is located at
steps 3, 12, 13, 15, 19 and 20. In step 13, the power
method can be used, so the complexity reduces to only
OðIterinnerMN

2Þ rather than OðIterinnerMN
3Þ for complete

ED. For other steps, the flops required are OðMNLþL2MÞ,
OðIterinnerN

2Þ, OðIterinnerNÞ, OðIterinnerN
2Þ and OðN2Þ,

respectively. Note that Iterinner is small and NrL, the
complexity for our algorithm is approximately equal to
OðL2MIterouterÞ.
4. Extension to the case with sparse representation
error

Learning a dictionary from a set of training data is to
solve the following problem:

Ψ9argmin
~Ψ ;fθkg

XP
k ¼ 1

Jxk� ~Ψθk J22 s:t: Jθk J0rS ð15Þ

where xk, k¼ 1;2;…; P are the training sequence of signals
and S is the given sparsity level. There exist many efficient
algorithms to consider the above problem, such as K-SVD,
MOD [7,8], etc. Clearly, the sparse representation error
ek9xk�Ψθk is not nil. Let X and Θ be the training data
and sparse coefficient matrix with

Xð: ; kÞ ¼ xk;Θð: ; kÞ ¼ θk; 8k
The sparse representation error matrix is then represented by

E9X�ΨΘ
ek ¼ Eð: ; kÞ; 8k
If ek ¼ 0, we say xk is exactly sparse. In most practical appli-
cations, given the whole training data, dictionary learning is
an offline problem. So the sparse representation error matrix
E can be obtained when the dictionary learning procedure is
finished.

In CS framework, the observed signal Y is of form
Y ¼ΦΨΘþΦE, where ΦE is the sparse representation
error of Y in ΦΨ. Note that though X̂9ΨΘ is a satisfactory
approximate of X, JΦEJF can be very large if Φ is not
properly chosen. In order to retrieve X̂ from Y accurately,
8 In the next section, we will use this algorithm to address a new cost
function which is derived to design an optimum projection matrix Φ
when the signal is not exactly sparse.
the value JΦEJF should be considered in the projection
matrix design. Therefore, it is desired to design Φ in the
same way as suggested by (9) and at the same time, to
reduce JΦEJF as much as possible. To deal with this
vector optimization problem, we tend to find the Pareto
optimal solution of the following problem:

min
Gt ;Φ

JGt�ΨT ΦT ΦΨJ2F þλJΦE J2F

GtAHμ

Hμ ¼ fGt jGt ¼ GT
t ;diagðGtÞ ¼ 1;max

ia j
jGtði; jÞjrμg ð16Þ

where λ is a regularization parameter which quantifies the
trade-off between closeness to ETF and sparse repre-
sentation error minimization. Clearly, alternating optimi-
zation is still suitable to address this problem.

As shown in Appendix A, the problem of minΦ JGt�
ΨT ΦT ΦΨJ2F þλJΦEJ2F is equivalent to

min
Φ

J ~G t�ΨT
sqrΦ

T ΦΨsqr J2F ð17Þ

where ~G t ¼Ψ�1
sqr ΨGtΨT � λ

2EE
T

� �
Ψ�1

sqr and Ψsqr ¼UΨΣΨUT
Ψ

with ΨsqrΨT
sqr ¼ΨΨT 9UΨΣ2

ΨU
T
Ψ. Note that (17) has the

same form as (10) and hence can be solved with the
method in Section 3.1. Thus, only by replacing Gt with ~G t

in step 9 of Algorithm 2, the modified algorithm can be
utilized to solve (16). For convenience, such procedure for
solving (16) is denoted as Algorithm 3. Additionally,
Algorithm 3 can be also applied to address the related
problems involving any symmetric Gt . When ζ¼ 0, which
indicates Gt ¼ I, Algorithm 4 is used to denote the related
procedure that obtains the projection matrix for this case.

5. The simulation experiments

In this section, we show several simulations to illustrate
the performance of the proposed algorithms and to compare
it with other algorithms. This section is divided into two parts.
In the first part, we conduct experiments with synthetic data
(which are exactly sparse) to show the merits of Algorithm 2
in terms of the measures μav, μmx and the recovery perfor-
mance of the CS systems. Additional experiments are carried
out to demonstrate that Algorithm 2 can converge to a global
solution as suggested in Comment 3.1. The real images are
utilized in the second part to manifest the influence of sparse
representation error to the CS systems. The extension in
Section 4 is used in this part to illustrate the importance of
considering sparse representation error in the optimum pro-
jection matrix design for this case. The choice of λ is investi-
gated in this part. For convenience, the projection matrices
obtained with the algorithms [20,26,19] are marked by Elad,
AFS and Lu, respectively.

The parameters in the above mentioned algorithms are
shown as follows and are fixed in all of the experiments. The
parameters t, γ for the algorithm proposed by Elad [20] are set
to μ and 0.75, respectively. For the algorithm in [26], para-
meters ̄β, K, ξ are set to 5� 10�4, 50 and 10�5, respectively.
For Lu, we use the same parameters as they are shown in [19].
The outer iteration number is set to 100 for all of the algo-
rithms. Iterinner is set to 2 in Algorithms 2–4.
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Fig. 1. Evolution of the maximal coherence μmx and average mutual
coherence μav versus iteration number for M¼15, N¼60, L¼80,
respectively.

Table 1
Evaluation with different measures for each of the five systems (M¼15,
N¼60, L¼80). The minimal μmx and μav is marked as bold.

Methods μmx μav

Elad 0.992 0.338
Lu 0.405 0.341
AFS (fixed) 0.559 0.333
AFS (adaptive) 0.407 0.302
Algorithm 2 0:393 0:300

10 Note that both Algorithm 2 and AFS solve (10) iteratively. Only in
Fig. 2(a)–(d), the iteration refers to the process of solving (10). In other
figures, the iteration refers to the process of solving (9) and the iteration
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5.1. Synthetic experiments

An N � L dictionary Ψ with normally distributed
elements9 and an M � N random matrix Φ0 as the initial
condition are generated for our simulation.

The measure of μmx and μav versus the outer iteration
number and the final values of μmx and μav obtained for the
five CS systems are shown in Fig. 1 and Table 1, respectively.

Comment 5.1:

� As seen from Table 1, Algorithm 2 has the minimal μav
and μmx compared with other algorithms. This demon-
strates the argument that designing the projection
matrix under ETF structure can simultaneously control
μav and μmx. We can also find in the next subsection that
the projection matrix obtained by Algorithm 2 yields a
better performance in terms of signal recovery accuracy
9 In this paper, all of the dictionary matrices are normalized that the
l2 norm of all columns in dictionary matrix is equal to 1.
than the projection matrix obtained by Elad and Lu who
minimize only μav or μmx.

� As shown in Fig. 1, Algorithm 2 has a faster convergence
speed than other algorithms in terms of the decrease of
μav and μmx. Although Algorithm 2 shares the same
framework as AFS, the former has a faster convergence
than AFS because Algorithm 2 finds a more accurate
solution for (10). This can be observed from Fig. 2(a).10

It is interesting to note that the method illustrated in
Section 3.1 for solving (11) converges to a global solution
in some specific cases. To demonstrate this standpoint, we
set Gt to an identity matrix and design a dictionary matrix
which has a full row rank. In this case, [22] showed the
global minimum of (5) is L�M. It is observed from
Fig. 2(b)–(d) that our method converges to the same
solution as suggested in [22].

As seen from Fig. 3, Algorithm 2 can make the objective
function decrease monotonically which demonstrates that
it is stable and the objective value converges.

Now, several experiments are given to examine the
signal reconstruction accuracy of the five CS systems. A set
of P¼1000 S-sparse L� 1 vectors fθkg ðk¼ 1;2;…; PÞ is
produced with a given N � L random dictionary Ψ. Each
non-zero entry of θk is randomly positioned with a Gaus-
sian distribution of independent identical distribution (i.i.
d.) zero-mean and unit variance. The test signal vectors
fxkg are generated by xk ¼Ψθk; 8k. The observed signal fykg
is obtained using yk ¼Φxk; 8k, where Φ is the projection
matrix taken from the above five projection matrices.

The recovered signal x̂k is obtained by using x̂k ¼Ψθ̂k,
where θ̂k is the solution of (2). OMP algorithm is utilized to
handle (2).11 The recovered accuracy is quantified with the
mean square error (MSE) defined as [7]

σmse9
1

N � P

XP
k ¼ 1

J x̂k�xk J22

To explain the performance, two distinct sets of experi-
ments are carried out as follows.

Case I: M¼25, N¼80, L¼120, Fig. 4(a) shows the signal
reconstruction accuracy of the CS systems for signal spar-
sity S varying from 1 to 6.
number represents the number of outer iterations in both Algorithms
1 and 2.

11 Note that OMP is also harnessed in the next subsection to find the
sparsest solution.



Fig. 2. (a) Evolution of the objective function error of (10) for one of the fixed Gt versus iteration number for M¼15, N¼60, L¼80. (b) Evolution of the
objective function error of (5) for Gt ¼ I for N¼100, L¼250 and M varying from 15 to 45. (c) Evolution of the objective function error of (5) for Gt ¼ I for
M¼15, L¼250 and N varying from 60 to 120. (d) Evolution of the objective function error of (5) for Gt ¼ I for M¼15, N¼100 and L varying from 220 to 280.

Fig. 3. Evolution of the objective function of (9) for JGt�ΨT ΦT ΦΨJ2F
versus iteration number for M¼15, N¼60, L¼80.
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Case II: S¼4, N¼80, L¼120, Fig. 4(b) shows the signal
reconstruction accuracy of CS systems for projection
dimension M varying from 12 to 24.

As seen from Fig. 4(a) and (b), Algorithm 2 outperforms
the others in terms of σmse. As shown in Table 1, Algorithm 2
and AFS (adaptive) have approximately the same values of
μmx and μav, so they achieve similar recovery performance.
However, Algorithm 2 has a faster convergence rate than AFS
(adaptive) in decreasing μmx and μav, see Fig. 1.

5.2. Real image experiments

In this subsection, we investigate a different situation that
there exists signal representation error. The real images are
used to examine the performance of the above mentioned CS
systems. The classical K-SVD algorithm is utilized to design
the sparsifying dictionary Ψ [7]. The data of training and
testing is extracted from the LabelMe database [33].
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Fig. 4. (a) Performance evaluation: σmse versus signal sparsity level S
varying from 1 to 6 for M¼25, N¼80, L¼120. (b) Performance evalua-
tion: σmse versus sampling dimension M varying from 12 to 24 for S¼4,
N¼80, L¼120.
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Training data: Firstly, 400 images are selected from the
LabelMe training data set. Then 15 non-overlapping pat-
ches with size 8� 8 are extracted randomly from each
image. The patches are rearranged as 64� 1 vectors.
Finally, 6000 training samples are generated and utilized
for sparsifying dictionary learning.

Testing data: The testing data is extracted from the
LabelMe testing data set in the same way as for the
training data. Once again, we extract 6000 testing samples
fxkARN�1g with N¼64. These testing samples will be used
to test the choice of λ.

The recovery accuracy is evaluated in terms of peak
signal-to-noise ratio (PSNR) given by [9]

σpsnr910� log10
ð2r�1Þ2
σmse

" #
dB

with r¼8 bits per pixel. The dimension of the over-
complete dictionary Ψ is set to 64� 256 in the following
two subsubsections.

5.2.1. The choice of λ
The trade-off parameter λ plays an important role in

Algorithms 3 and 4. However, it is difficult to obtain
analytical solution as the guidance for choosing λ.
Hence, some experiments are carried out to pre-
determine a suitable λ for the practical design proce-
dure. The testing data is utilized to conduct the
experiments. We choose λ in the range of 0–1 with a
step size of 0.01 while the related M varying from 15 to
20. Two different sparsity levels S¼4 and S¼5 are tes-
ted. Fig. 5 shows the PSNRs with its maximum value
normalized to 1 versus λ and M.

As seen from Fig. 5, different sparsity level S, with fixed
M and λ, results in different recovery performance. How-
ever, we can observe that the figures will become flat
when λ exceeds a proper value. Thus though different
images may have different optimal λ, a relatively large λ
always yields a moderate performance. In practical, we
cannot determine an optimal λ for every image. A general λ
can be determined through Fig. 5 and we will see the λ

chosen this way can also receive optimistic results in the
next subsubsection.

In the next part, some natural images are taken to test
the performance of Algorithms 3 and 4.
12 Since Algorithm 2 shares the same framework as AFS (fixed or
adaptive) and has better performance, we do not display the results for
them here.
5.2.2. Application to image compression
Six natural images are taken to illustrate the perfor-

mance of above mentioned CS systems. We choose two
different sparsity levels S¼4,5 and set the sampling
dimension M to a fixed value 16. According to Fig. 5, we set
the trade-off parameter λ in Algorithms 3 and 4 to 0.5 for all
of the two different sparsity levels. The random projection
matrix is also utilized to compare with other algorithms
and is denoted as Rand. The method mentioned in [21] for
designing projection matrix is used in this subsubsection to
have a comparison with the extension method proposed in
this paper and is denoted as DCS. As shown in [21], DCS has
a well performance for the case when the signal repre-
sentation error exists. So we add it here to have a
comparison. For convenience, in what follows, we use Alg 2,
Alg3 and Alg4 to represent Algorithm 2, Algorithm 3 and
Algorithm 4, respectively. Their performance in terms of
σpsnr is shown in Table 2. In order to demonstrate the visual
clearly, two images ‘Elaine’ and ‘Boat’ are shown in
Figs. 6 and 7, respectively.12

As seen from Table 2, the PSNRs of the Alg3 are 2 dB
better than Alg2 for the tested six images. This illustrates
the effectiveness of the penalty function (i.e., sparse
representation error) mentioned in Section 4. Clearly, Alg4
has the best performance in terms of PSNR among the CS
systems. In this case where the signal is not exactly sparse,
some optimum projection matrices, such as Elad, and
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Fig. 5. (a) Testing patches' PSNRs versus λ and M for Algorithm 3 with sparsity level S¼4. (b) Testing patches' PSNRs versus λ and M for Algorithm 4 with
sparsity level S¼4. (c) Testing patches' PSNRs versus λ and M for Algorithm 3 with sparsity level S¼5. (d) Testing patches' PSNRs versus λ and M for
Algorithm 4 with sparsity level S¼5.

Table 2
σpsnr for six natural images processed of M¼16, N¼64, L¼256 with S¼4 and S¼5. The highest PSNR is marked as bold.

Lena Elaine Boat Man Couple Peppers

Methods S¼4 S¼5 S¼4 S¼5 S¼4 S¼5 S¼4 S¼5 S¼4 S¼5 S¼4 S¼5

Rand 27.67 27.19 27.93 27.70 24.83 24.58 26.10 25.77 24.03 23.77 23.25 22.96
Elad 27.26 27.04 23.73 23.78 23.72 23.39 25.10 24.90 23.19 22.80 22.96 22.78
Lu 28.03 28.05 26.16 26.84 24.70 24.68 26.06 26.21 23.66 24.01 23.72 23.64
DCS 28.87 28.30 29.50 29.44 26.17 26.09 27.47 27.33 24.92 25.05 24.53 24.34
Alg 2 26.53 26.76 23.07 23.33 22.89 23.08 24.31 24.46 22.23 22.24 22.56 22.31
Alg 3 28.94 29.30 28.68 28.95 26.18 25.99 27.32 27.43 25.31 25.80 24.81 25.44
Alg 4 30:85 31:01 31:08 31:08 27:81 27:86 29:10 29:18 26:92 26:98 26:66 27:07
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Algorithm 2, yield inferior performance than the Rand one.
This phenomenon indicates the importance of considering
sparse representation error for projection matrix design.
The same phenomena can also be observed from
Figs. 6 and 7.
6. Conclusion

An efficient algorithm based on alternating optimiza-
tion is proposed in this paper to design projection matrix.
Algorithm 2 converges reasonably faster than other



Fig. 6. ‘Elaine’ and its reconstructed images from the corresponding CS systems with S¼ 4. (a) The original. (b) Rand. (c) Elad. (d) Lu. (e) DCS. (f) Alg 2.
(g) Alg 3. (h) Alg 4. The PSNRs are shown in Table 2.
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Fig. 7. ‘Boat’ and its reconstructed images from the corresponding CS systems with S¼ 4. (a) The original. (b) Rand. (c) Elad. (d) Lu. (e) DCS. (f) Alg 2. (g) Alg
3. (h) Alg 4. The PSNRs are shown in Table 2.
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algorithms. In order to design a robust projection matrix
for the case when the sparse representation error exists,
an extension approach is introduced and can be efficiently
solved by Algorithm 2. The simulation results demonstrate
that Algorithm 2 and the extension methods outperform
other algorithms. Moreover, the extension method gives a
way to take the sparse representation error into con-
sideration when the signal is not exactly sparse. The rela-
ted problems about this direction still need more
investigation.
Acknowledgment

This work was support by the NSFC-Grants 61273195,
61304124, 61473262, 61503330 and 61503339.
Appendix A. The proof of (17)
Proof. Suppose the dictionary Ψ is full rank, which is
satisfied in most case. Ψ¼UΨ ΣΨ 0½ �VT

Ψ represents an SVD
of Ψ. Let Ψsqr denote the square root of ΨΨT ; that is

Ψsqr ¼UΨΣΨUT
Ψ:

We have

JGt�ΨT ΦT ΦΨJ2F þλJΦEJ2F
3�2 tr QΦT Φ

� 	þtr ΨsqrΨsqrΦT ΦΨsqrΨsqrΦT Φ
� 	

þλ tr EET ΦT Φ
� �

¼ tr �2Ψ�1
sqr Q� λ

2
ET E


 �
Ψ�1

sqr ΨsqrΦT ΦΨsqr



þΨsqrΦT ΦΨsqrΨsqrΦT ΦΨsqr

	
3 JΨ�1

sqr Q� λ

2
ET E


 �
Ψ �1

sqr �ΨsqrΦT ΦΨsqr J2F

¼ J ~G t�ΨsqrΦT ΦΨsqr J2F

where Q ¼ΨGtΨT and ~G t ¼Ψ�1
sqr Q� λ

2E
T E

� �
Ψ�1

sqr . This
completes the proof.□
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