Accelerating Multigrid Optimization via SESOP

Tao Hong Joint work with Irad Yavneh and Michael Zibulevsky

Computer Science Department Technion - Israel Institute of Technology

Outline

Background

MG/OPT Framework
Sequential Subspace Optimization (SESOP)

Merge MG/OPT and SESOP

SESOP-TG Scheme Convergence Factor Analysis with Optimized Stepsizes

Numerical Results

The Roated Anisotropic Diffusion Problem - Linear *p*-Laplacian Problem - Nonlinear

MG/OPT Framework [Nas00]

Consider

$$\mathbf{x}_*^h = \arg\min_{\mathbf{x}^h \in \mathfrak{R}^N} \mathcal{F}^h(\mathbf{x}^h).$$

 $\mathcal{F}^h(\cdot)$ is smooth \Rightarrow "Relaxation" \to Jacobi, Gauss-Seidel, Gradient Descent, Nesterov's Acceleration, LBFGS etc.

Consider $(N_c < N)$

$$\mathbf{x}_*^H = \arg\min_{\mathbf{x}^H \in \Re^{N_c}} \mathcal{F}^H(\mathbf{x}^H) - \mathbf{v}_k^T \mathbf{x}^H, - \text{Coarse Problem}$$

where
$$\mathbf{v}_k = \nabla \mathcal{F}^H(\mathbf{x}_k^H) - \mathbf{R} \nabla \mathcal{F}^h(\mathbf{x}_k^h)$$
.
 $\mathbf{R} \in \mathfrak{R}^{N_c \times N} - \text{Restriction} \quad \& \quad \mathbf{x}_{\iota}^H = \mathbf{R} \mathbf{x}_{\iota}^h$

Define $\mathbf{P} \in \mathfrak{R}^{N \times N_c}$ – Prolongation

MG/OPT - two-level:

$$extbf{\textit{x}}_0 \stackrel{ ext{Relax.}}{\Longrightarrow} extbf{\textit{x}}_k \stackrel{ ext{CGC}}{\Longrightarrow} extbf{\textit{x}}_k = extbf{\textit{x}}_k + eta extbf{\textit{P}} (extbf{\textit{x}}_*^H - extbf{\textit{x}}_k^H) \stackrel{ ext{Relax.}}{\Longrightarrow} ...$$

CGC: Coarse-Grid Correction

Multilevel: recursively

Sequential Subspace Optimization (SESOP) [Zib13]

Consider

$$\min_{\boldsymbol{x}^h \in \mathfrak{R}^N} \mathcal{F}^h(\boldsymbol{x}^h).$$

Formulate a subspace

$$\mathfrak{P}_k = \left[\boldsymbol{\Phi} \nabla \mathcal{F}^h(\boldsymbol{x}_k^h), \boldsymbol{\delta}_k, \boldsymbol{\delta}_{k-1}, \cdots, \boldsymbol{\delta}_{k-\Pi+1} \right], \ \Pi \geq 0.$$

Φ: Preconditioner & $δ_k = x_k^h - x_{k-1}^h$ & Π: Size of histories SESOP:

$$\mathbf{x}_0 \overset{\mathfrak{P}_k}{\Longrightarrow} \mathbf{\alpha}_k = \arg\min_{\mathbf{\alpha}} \mathcal{F}^h(\mathbf{x}_k^h + \mathfrak{P}_k \mathbf{\alpha}) \Rightarrow \mathbf{x}_{k+1} = \mathbf{x}_k + \mathfrak{P}_k \mathbf{\alpha}_k \overset{\mathfrak{P}_{k+1}}{\Longrightarrow} \dots$$

Pros: General framework & Optimal convergence rate $\to O(\frac{1}{k^2})$ & Same as Conjugate-Gradient (CG) – Quadratic Cons: May need high complexity \to solving $\min_{\alpha} \mathcal{F}^h(\mathbf{x}_k^h + \mathfrak{P}_k\mathbf{\alpha})$

SESOP-TG: Merge MG/OPT and SESOP [HYZ18]

Remind SESOP:

$$\mathfrak{P}_{k} = \left[\boldsymbol{\Phi} \nabla \mathcal{F}^{h}(\boldsymbol{x}_{k}^{h}), \boldsymbol{\delta}_{k}, \boldsymbol{\delta}_{k-1}, \cdots, \boldsymbol{\delta}_{k-\Pi+1} \right]$$

Our scheme – add CGC in \mathfrak{P}_k :

$$\tilde{\mathfrak{P}}_{k} = \left[\mathbf{\Phi} \nabla \mathcal{F}^{h}(\mathbf{x}_{k}^{h}), \mathbf{P}(\mathbf{x}_{*}^{H} - \mathbf{x}_{k}^{H}), \mathbf{\delta}_{k}, \mathbf{\delta}_{k-1}, \cdots, \mathbf{\delta}_{k-\Pi+1} \right]$$

SESOP-TG-Π: TG means two-grid

$$\mathbf{x}_0 \xrightarrow{\mathtt{CGC\&\tilde{\mathfrak{P}}_k}} \mathbf{\alpha}_k = \arg\min_{\mathbf{\alpha}} \mathcal{F}^h(\mathbf{x}_k^h + \tilde{\mathfrak{P}}_k \mathbf{\alpha}) \Rightarrow \mathbf{x}_{k+1} = \mathbf{x}_k + \tilde{\mathfrak{P}}_k \mathbf{\alpha}_k \xrightarrow{\mathtt{CGC\&\tilde{\mathfrak{P}}_{k+1}}} \dots$$

Convergence Factor Analysis on Linear Problems

Consider

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{f}^T \mathbf{x}, \ \mathbf{A} \succ 0$$

SESOP-TG-1:

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} + c_1 \underbrace{(\mathbf{x}_{k-1} - \mathbf{x}_{k-2})}_{\text{History}} + c_2 \underbrace{\Phi(\mathbf{f} - \mathbf{A}\mathbf{x}_{k-1})}_{\text{Pre. Gradient}} + c_3 \underbrace{\mathbf{P}\mathbf{A}_H^{-1}\mathbf{R}(\mathbf{f} - \mathbf{A}\mathbf{x}_{k-1})}_{\text{CGC}}$$

A_H: coarse-grid matrix approximating A

Elliptic PDE: \mathbf{A}_H rediscretization or Galerkin formula - $\mathbf{A}_H = \mathbf{R}\mathbf{A}\mathbf{P}$

Denote by $\boldsymbol{e}_k = \boldsymbol{x}^* - \boldsymbol{x}_k$. We have

$$\boldsymbol{e}_k = \boldsymbol{\Gamma} \boldsymbol{e}_{k-1} - c_1 \boldsymbol{e}_{k-2},$$

where
$$\Gamma = (1 + c_1)I - (c_2\Phi + c_3PA_H^{-1}R)A$$
.

Convergence Factor Analysis Continued

Remind

$$e_k = \Gamma e_{k-1} - c_1 e_{k-2}.$$

Define $\mathbf{\textit{E}}_{k} = \begin{bmatrix} \mathbf{\textit{e}}_{k} \\ \mathbf{\textit{e}}_{k-1} \end{bmatrix}$. We have

$$\mathbf{E}_k = \mathbf{\Upsilon} \mathbf{E}_{k-1}, \ \mathbf{\Upsilon} \triangleq \begin{bmatrix} \mathbf{\Gamma} & -c_1 \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix}$$

By a giving c_1, c_2, c_3 , the asymptotic convergence factor r is

$$r = \rho(\Upsilon)$$

where $\rho(\cdot)$ the spectral radius operator.

Optimizing Fixed Stepsizes

 c_1, c_2, c_3 : subspace minimization & each iteration - SESOP.

Existing optimal fixed one?

The answer is *Positive*

But How?

$$r(c_1, c_2, c_3) = \min_{c_1, c_2, c_3} \rho(\Upsilon)$$

linear search?

Let us see :-)

Optimizing Fixed Stepsizes Continued

Remind

$$\boldsymbol{e}_k = \boldsymbol{\Gamma} \boldsymbol{e}_{k-1} - c_1 \boldsymbol{e}_{k-2},$$

where $\Gamma=(1+c_1)\emph{I}-\left(c_2\Phi+c_3\emph{PA}_H^{-1}\emph{R}\right)\emph{A}$. Define $\emph{W}_\alpha=\alpha\Phi\emph{A}+(1-\alpha)\emph{PA}_H^{-1}\emph{R}\emph{A}$ with $\alpha\in[0,1]$. Then

$$\mathbf{\Gamma} = (1+c_1)\mathbf{I} - c_{23}\mathbf{W}_{\alpha}$$

with $c_{23} = c_2 + c_3$.

Denote $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$ the condition number of \mathbf{W}_{α} .

Optimal Convergence Factor of SESOP-TG-1 [HYZ18]:

$$r_{opt} = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

by choosing
$$c_1=\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^2$$
 and $c_{23}=\boxed{\frac{4}{\lambda_{min}(\sqrt{\kappa}+1)^2}}$ with a given α .

Optimizing Fixed Stepsizes Continued

Remind

$$r_{opt} = \boxed{rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}}$$
 and $\kappa = cond(extbf{ extit{W}}_{lpha})$

where $\mathbf{W}_{\alpha} = \alpha \mathbf{\Phi} \mathbf{A} + (1 - \alpha) \mathbf{P} \mathbf{A}_{H}^{-1} \mathbf{R} \mathbf{A}$ with $\alpha \in [0, 1]$.

Remarks:

- $c_1=\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^2$ ill-conditioned & using history is significant.
- ightharpoonup $\alpha = 1$, retain Conjugate-Gradient (CG) rate
- ho $\alpha = 1 \& c_1 = 0$, $r_{opt} = \frac{\kappa 1}{\kappa + 1}$, retain gradient descent rate
- only need to find a bounded α for minimizing κ rather three \rightarrow min $_{c_1,c_2,c_3}$ $\rho(\Upsilon)$ relatively simple

Left:

Find α to minimize κ

Optimizing κ - Theoretic Insights

Assume $A_H = RAP$ (Galerkin form), $\Phi = I$, and the columns of P are a subset of the eigenectors of A.

Denote by $\mathcal{R}(I_H^h)$ the range of the prolongation and

$$\begin{split} & \eta_{\textit{fmax}} = \max_{i: \textit{\textbf{w}}_i \notin \mathcal{R}(\textit{\textbf{P}})} \eta_i, \qquad \eta_{\textit{fmin}} = \min_{i: \textit{\textbf{w}}_i \notin \mathcal{R}(\textit{\textbf{P}})} \eta_i, \\ & \eta_{\textit{cmax}} = \max_{i: \textit{\textbf{w}}_i \in \mathcal{R}(\textit{\textbf{P}})} \eta_i, \qquad \eta_{\textit{cmin}} = \min_{i: \textit{\textbf{w}}_i \in \mathcal{R}(\textit{\textbf{P}})} \eta_i. \end{split}$$

where η_i and \mathbf{w}_i are the eigenvalues and corresponding eigenvectors of \mathbf{A} .

We have

$$\begin{aligned} \alpha_{opt} &= \left\lfloor \frac{1}{1 + \eta_{\textit{Imin}} - \eta_{\textit{cmin}}} \leq 1, \right. \\ \kappa_{opt} &= \left\{ \begin{array}{ll} \frac{\eta_{\textit{Imax}}}{\eta_{\textit{Imin}}} & \text{if } \eta_{\textit{Imax}} - \eta_{\textit{fmin}} \geq \eta_{\textit{cmax}} - \eta_{\textit{cmin}}, \\ 1 + \frac{\eta_{\textit{cmax}} - \eta_{\textit{cmin}}}{\eta_{\textit{Imin}}} & \text{otherwise}. \end{array} \right. \end{aligned}$$

Remark:
$$1 + \frac{\eta_{cmax} - \eta_{cmin}}{\eta_{fmin}} < \frac{\eta_{fmax}}{\eta_{fmin}} + 1 < 2 \text{ & } \kappa_{opt} = \frac{\eta_{fmax}}{\eta_{fmin}} - \text{ill-conditioned}$$

Optimizing κ - In Practice

It is challenge for a general A.

But if ${\bf A}$ is formulated from an elliptic partial differential equation (PDE) with constant coefficients, we can optimize κ in practice.

Strategy I: Local Fourier Analysis

Example: two dimensional & two-grid analysis

Denote:

 $T^{\mathrm{low}}:\left[-rac{\pi}{2},rac{\pi}{2}
ight)^2$ & L_h the elliptic operator & $\widetilde{L}_h(heta_1, heta_2)$ the symbol of L_h

Remind: $\mathbf{W}_{\alpha} = \alpha \mathbf{A} + (1 - \alpha) \mathbf{P} \mathbf{A}_{H}^{-1} \mathbf{R} \mathbf{A}$ (extend to $\mathbf{\Phi} \neq \mathbf{I}$ obviously)

The eigenvalues of $\textbf{\textit{W}}_{\alpha} \Leftrightarrow 4 \times 4, \ \ \tilde{\textbf{\textit{W}}}_{\alpha}^{\theta_1,\theta_2}$ over the whole $(\theta_1,\theta_2) \in T^{low}$

$$\tilde{\textit{W}}_{\alpha}^{\theta_{1},\theta_{2}} = \alpha \tilde{\textit{A}}^{\theta_{1},\theta_{2}} + (1-\alpha)\tilde{\textit{P}}^{\theta_{1},\theta_{2}} \left(\tilde{\textit{A}}_{\textit{H}}^{\theta_{1},\theta_{2}}\right)^{-1}\tilde{\textit{R}}^{\theta_{1},\theta_{2}}\tilde{\textit{A}}^{\theta_{1},\theta_{2}}$$

Optimizing κ - In Practice Continued

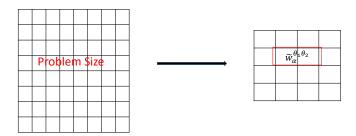
Strategy I and Example continued:

$$\begin{split} \tilde{\textit{\textbf{W}}}_{\alpha}^{\theta_{1},\theta_{2}} &= \quad \alpha \tilde{\textit{\textbf{A}}}^{\theta_{1},\theta_{2}} + (1-\alpha) \tilde{\textit{\textbf{P}}}^{\theta_{1},\theta_{2}} \left(\tilde{\textit{\textbf{A}}}_{H}^{\theta_{1},\theta_{2}} \right)^{-1} \tilde{\textit{\textbf{R}}}^{\theta_{1},\theta_{2}} \tilde{\textit{\textbf{A}}}^{\theta_{1},\theta_{2}} \\ \tilde{\textit{\textbf{A}}}^{\theta_{1},\theta_{2}} &= \quad \begin{bmatrix} \tilde{L}_{h}(\theta_{1},\theta_{2}) \\ \tilde{L}_{h}(\bar{\theta}_{1},\theta_{2}) \\ \tilde{L}_{h}(\theta_{1},\bar{\theta}_{2}) \end{bmatrix} \\ \tilde{\textit{\textbf{A}}}_{H}^{\theta_{1},\theta_{2}} &= \quad \frac{1}{4} \tilde{L}_{h}(2\theta_{1},2\theta_{2}) - \text{rediscretization} \\ \text{or} \\ \tilde{\textit{\textbf{A}}}_{H}^{\theta_{1},\theta_{2}} &= \quad \tilde{\textit{\textbf{H}}}^{\theta_{1},\theta_{2}} \tilde{L}_{h}(2\theta_{1},2\theta_{2}) \tilde{\textit{\textbf{P}}}^{\theta_{1},\theta_{2}} - \text{Galerkin form} \\ \bar{\theta}_{i} &= \quad \begin{cases} \theta_{i} + \pi, & \text{if } \theta_{i} < 0 \\ \theta_{i} - \pi, & \text{if } \theta_{i} > 0 \end{cases}, i = 1,2 \end{split}$$

where $\tilde{\mathbf{R}}^{\theta_1,\theta_2} \in \mathfrak{R}^{4\times 1}$ and $\tilde{\mathbf{P}}^{\theta_1,\theta_2} \in \mathfrak{R}^{1\times 4}$ denote the symbols of \mathbf{R} and \mathbf{P} , respectively.

Optimizing κ - In Practice Continued

Strategy II: Evaluate on a small size of grids - deterioration



Result: Evaluating the eigenvalues of \mathbf{W}_{α} becomes easily

Linear search $\Rightarrow \min_{\alpha \in [0,1]} cond(\textbf{\textit{W}}_{\alpha}) \Rightarrow e.g.$, MATLAB "fminbnd"

What Is Left?

- ► Two-level ⇒ Multilevel : recursively
- ► The connection with *h*-ellipticity measure

$$E_h(L_h) := \frac{\min\{|\tilde{L}_h(\mathbf{\theta})| : \mathbf{\theta} \in T^{\text{high}}\}}{\max\{|\tilde{L}_h(\mathbf{\theta})| : \mathbf{\theta} \in T^{\text{high}}\}}$$

where
$$T^{high}: [-\pi,\pi)^2 \setminus \left[-\frac{\pi}{2},\frac{\pi}{2}\right]^2$$
. ill-conditioned: $\kappa_{opt} = \frac{1}{E_h} \Rightarrow r_{opt} = \frac{1-\sqrt{E_h}}{1+\sqrt{E_h}}$ - Ideal One Remind: Theoretic Insights

Remina: Theoretic insignts

► Find the details ⇒ our paper [HYZ18]

The Roated Anisotropic Diffusion Problem - Linear

Problem description:

$$\mathcal{L}u = f$$

where

$$\mathcal{L}u = (C^{2} + \varepsilon S^{2})u_{xx} + 2(1 - \varepsilon)CSu_{xy} + (\varepsilon C^{2} + S^{2})u_{yy}$$

with $C = \cos \phi$ and $S = \sin \phi$.

Discretization:

$$\mathcal{L}^{h} = \frac{1}{h^{2}} \begin{bmatrix} -\frac{1}{2}(1-\epsilon)CS & \epsilon C^{2} + S^{2} & \frac{1}{2}(1-\epsilon)CS \\ C^{2} + \epsilon S^{2} & -2(1+\epsilon) & C^{2} + \epsilon S^{2} \\ \frac{1}{2}(1-\epsilon)CS & \epsilon C^{2} + S^{2} & -\frac{1}{2}(1-\epsilon)CS \end{bmatrix}$$

Coarse problem: rediscretization

Bilinear and Full-weighting

Linear Continued - Stepsizes & Subspace Minimization

Fine 64×64 grids & Dirichlet Boundary Condition

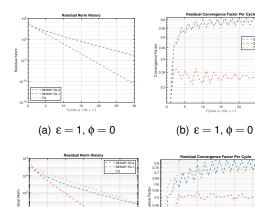
TG: Jacobi with optimally damped factor

Residual Norm:

$$\|\mathcal{L}^h \boldsymbol{u}_k^h - f^h\|_F$$

Convergence Factor:

$$\frac{\|\mathcal{L}^h \boldsymbol{u}_k^h - f^h\|_F}{\|\mathcal{L}^h \boldsymbol{u}_{k-1}^h - f^h\|_F}$$



Civiles & =0.25 # c =0.001

(c)
$$\epsilon=10^{-3}, \, \varphi=\frac{\pi}{4}$$
 (d) $\epsilon=10^{-3}, \, \varphi=\frac{\pi}{4}$

Cycles o =0.25\tau e =0.001

Linear Problem Continued - SESOP Vs Fixed Stepsizes

Fine 64×64 & Periodic Boundary Condition

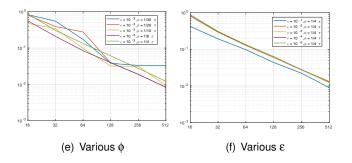
The comparison of convergence factor versus diff. methods SESOP - Geometric average of the last 10 iterations

ф	ε	Bilinear		Bicubic		Ideal One
		SESOP	Fixed	SESOP	Fixed	ideal One
0	1	0.332	0.332	0.333	0.331	0.333
$\frac{\pi}{6}$	10^{-3}	0.570	0.563	0.537	0.532	0.587
$\frac{\pi}{6}$	10^{-4}	0.572	0.565	0.538	0.533	0.588
$\frac{\pi}{4}$	10^{-3}	0.509	0.500	0.457	0.443	0.446
$\frac{\pi}{4}$	10^{-4}	0.511	0.502	0.458	0.445	0.446

Linear Problem Continued - Deterioration of Strategy II

Denote

$$r_{ratio}(Num) \triangleq \frac{\log r_{1024}^{opt}}{\log r_{Num}^{opt}} - 1$$

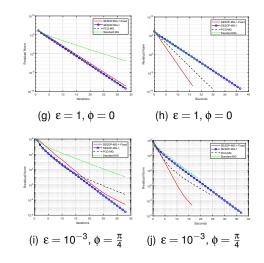


Result: working on 128×128 but solving 1024×1024 & less 10% additional computation - benefit if work on a huge problem

Linear Problem Continued - Multilevel Results

fine 1024 \times 1024 & determine 64 \times 64 - 1.5 seconds & Dirichlet W-cycle, 2 pre- and 1 postrelaxation only coarse levels

- SESOP-MG-1-Fixed: fixed stepsizes
- SESOP-MG-1: subspace minimization
- Standard MG: Jacobi relaxation with optimally damped factor + Coarse-Grid Correction
- PCG-MG: Preconditioned CG with standard MG as the preconditioner



p-Laplacian Problem - Nonlinear

Problem description:

$$\begin{cases} & \min_{u} \mathcal{F}\left(u(x,y)\right) = \int_{\Omega} \left\|\nabla u(x,y) + \xi\right\|^{p} - f(x,y)u(x,y) dx dy \\ & \text{such that} \quad u = 0 \quad \text{on} \quad \partial \Omega, \end{cases}$$

where $p \in (1,2)$.

PDE form:

$$\left\{ \begin{array}{c} -\nabla \cdot \left(\left\| \nabla u + \xi \right\|^{p-2} \nabla u \right) = f \text{ in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{array} \right.$$

 ξ > 0 regularization & avoid a trivial value in the denominator part.

Coarse problem: rediscretization

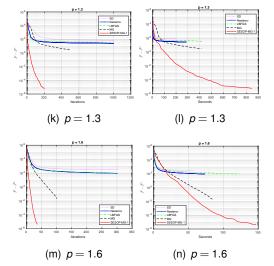
Bilinear and Full-weighting

Nonlinear Problem Continued

Fine 1024 \times 1024 & gradient descent as relaxation – SESOP-MG-1 and MG

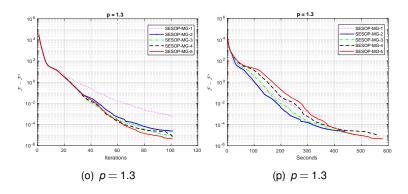
Newton as subspace minimization and BFGS for the coarsest level

 9×9



Nonlinear Problem Continued - History

Fine 1024 × 1024



More experiments and the detail of our analyses \Rightarrow our paper [HYZ18]

Thanks & Questions?

Accelerating multigrid optimization via sesop. *arXiv preprint arXiv:1812.06896*, 2018.

Stephen G Nash.

A multigrid approach to discretized optimization problems. *Optimization Methods and Software*, 14(1-2):99–116, 2000.

Speeding-up convergence via sequential subspace optimization: Current state and future directions.

arXiv preprint arXiv:1401.0159, 2013.