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Abstract

Optimization problems can be found naturally in many different fields. In many engineering problems,

we get a thirst to organize things in their best way which defines an optimization problem of a certain

formulation. Numerical optimization focuses on the discovery of fast numerical algorithms for such an

optimization problem. Multigrid computational methods study the way to solve differential problems

efficiently by using a hierarchy of discretizations. In this thesis, we mainly study numerical optimization

and multigrid computational methods as well as their applications.

Regularization by denoising (RED) is a recently developed framework to construct advanced priors

through state-of-the-art image denosising algorithms. We begin with the study of applying vector

extrapolation to accelerating the existing solvers in RED. Following, we propose a general framework

named weighted proximal methods (WPMs) for RED. We show that the previous two solvers in RED,

namely the fixed point and accelerated proximal methods, are two special cases of WPMs. By setting a

simple weighting, we show that WPMs converge faster than previous solvers.

In the second part of this thesis, we first adapt Nesterov’s scheme to accelerate iterative methods

for linear problems. In this work, we propose an analytic solution to obtain the optimal parameter

inside Nesterov’s scheme and discuss the robustness of Nesterov’s scheme. Our second work in this

part merges multigrid optimization with sequential subspace optimization formulating a new accelerated

scheme, dubbed SESOP-MG, which inherits the merits of these two methods. Additionally, we study the

asymptotic convergence factor of the two-grid version of SESOP-MG for linear problems and propose a

fixed-stepsize version for linear problems to save computation of SESOP-MG further.

Compressive sensing (CS) is a signal processing technique used to acquire and reconstruct signals of

interest efficiently. Sparsity and incoherence are two conditions in which the recovery in CS is possible.

Sparsity means that the signal can be represented sparsely in some domain which can be realized by

learning a dictionary or choosing a prescribed one for particular signals. Incoherence is satisfied by

designing a sensing matrix which also plays a role in acquiring signals. Our first work in this direction

presents a model to learn the dictionary and sensing matrix simultaneously. The resulting CS system

yields a higher signal reconstruction accuracy than previous CS systems. Our second work considers the

efficiency of acquiring signals with a structured sensing matrix consisting of a sparse matrix and a dense

matrix which allows fast implementation.
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Chapter 1

Introduction

Computational methods naturally find applications in all fields of engineering and sciences, e.g., biological,

physical, social, and business, etc. Since the growth in computing power has revolutionized in the past

decades, researchers can build progressively more accurate models, to better understand the real world.

These models are large-scale and complicated, requiring efficient computational methods even for today’s

powerful computers. This thesis concentrates on efficient computational methods—particularly numerical

optimization and multigrid computational methods—and their applications to signal processing and

computational imaging. The main contribution of this thesis is divided into three parts: (i) two efficient

solvers for regularization by denoising (RED); (ii) two accelerated schemes for optimization and linear

equations; (iii) the design of robust compressive sensing (CS) systems.

1.1 Two Efficient Solvers for Regularization by Denoising (RED)

1.1.1 First Contribution - Acceleration of RED via Vector Extrapolation

Inverse problems are one of the major problems in signal processing and its mission is to recover signals

of interest from some degraded measurements. By modelling the noisy and degraded measurements

yyy ∈ RM as yyy = HHHxxx+nnn, where HHH ∈ RM×N represents the degraded operator and nnn ∈ RM is the additive

noise, our target is to recover xxx given yyy. Typically, nnn is assumed to be the i.i.d. white Gaussian noise

with mean 0 and variance σ2. Using the maximum a posterior probability (MAP) and Bayes’s rule, the

reconstruction of xxx is equivalent to solving the following minimization problem

min
xxx

1
2σ2 ‖yyy−HHHxxx‖2

2︸ ︷︷ ︸
F(xxx)

+λR(xxx),

where F(xxx) refers to the data-fidelity term measuring the discrepancy between the estimated signal and

the measurements and R(·) refers to the prior used to describe the distribution of xxx, e.g., total variation [1],

wavelets [2], dictionary learning [3], or convolutional neural network [4]. λ > 0 is a trade-off parameter

to balance F(xxx) and R(·). We note that finding an effective R(xxx) to describe the distribution of signals of

interest is a core subject in inverse problems. Recently, Romano et al. introduced a general framework

called regularization by denoising (RED) [5] to construct priors through state-of-the-art image denoising

algorithms that allows us to adapt modern denoisers to establish priors. In RED, Romano et al. showed
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that solving inverse problems amounts to an iterated denoising process. Since the complexity of denoising

algorithms is generally high, RED may lead to an overall slow algorithm hindering practical use. Our first

contribution proposes an accelerated technique based on vector extrapolation (VE) to speed-up existing

RED solvers [6].

1.1.2 Second Contribution - Solving RED with Weighted Proximal Methods

By using VE to speed-up the solvers in RED, one can recover an image by calling the denoisers 30−50

times. However, it is still slow for realistic use. Our second contribution presents a general framework

called weighted proximal methods (WPMs) for RED [7]. We first show that two recently introduced

RED solvers (the fixed point and accelerated proximal gradient methods) are particular cases of WPMs.

Then we verify by numerical experiments that slightly more sophisticated variants of WPMs can lead to

reduced run times for RED by requiring a significantly smaller number of calls, typically 10−20 times,

to the denoiser.

1.2 Two Accelerated Schemes for Optimization and Linear Equations

1.2.1 Third Contribution - On Adapting Nesterov’s Scheme to Accelerate Iterative Meth-
ods for Linear Problems

In many scientific applications, we need to solve linear systems of equations,

AAAxxx = fff ,

where AAA ∈ RN×N is a sparse, large-scale, ill-conditioned matrix. In practice, the size of AAA is often so

large that direct methods are inapplicable and the use of iterative methods becomes more attractive,

e.g., Jacobi, Gauss-Seidel, and multigrid methods. Classic iterative methods may become inefficient for

difficult problems, and we therefore combine them with acceleration techniques, e.g., Krylov subspace

acceleration methods, to obtain efficient hybrid methods.

Our third contribution studies the adaption of Nesterov’s well-known scheme to accelerating stationary

iterative solvers for linear problems [8]. Compared with Krylov subspace acceleration methods, the

proposed scheme requires more iterations, but it is trivial to implement and retains essentially the same

computational cost as the unaccelerated method. An explicit formula for a fixed optimal parameter is

derived in the case where the stationary iteration matrix has only real eigenvalues, based only on the

smallest and largest eigenvalues. The fixed parameter and corresponding convergence factor are shown to

maintain their optimality when the iteration matrix also has complex eigenvalues that are contained within

an explicitly defined disk in the complex plane. A comparison to Chebyshev acceleration based on the

same information of the smallest and largest real eigenvalues (dubbed Restricted Information Chebyshev

acceleration) demonstrates that Nesterov’s scheme is more robust in the sense that it remains optimal over

a larger domain when the iteration matrix does have some complex eigenvalues.

1.2.2 Fourth Contribution - Merging Multigrid Optimization with SESOP

Multigrid (MG) methods are widely considered to be an efficient approach for solving elliptic partial

differential equations (PDEs) and systems, as well as other problems which can be effectively represented
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on a hierarchy of grids or levels [9, 10, 11, 12]. However, it is often challenging to design efficient

stand-alone MG methods for difficult problems, and therefore MG methods are often used in combination

with acceleration techniques (e.g., [13]). Our fourth contribution [14] of this thesis is to treat MG

as an optimization framework and seek robust solution methods by merging this approach with so-

called SEquential Subspace OPtimization (SESOP) [15], dubbed SESOP-MG. Our idea is to add the

coarse grid correction (CGC) generated from MG methods to the search subspace of SESOP which

contains preconditioned gradient and the search directions produced by the previous iterates, called

history. Furthermore, we also study the asymptotic convergence factor (ACF) of the two-level version of

SESOP-MG for quadratic optimization problems. Interestingly, we show that if the problem is quadratic

and the subspace only contains three directions, namely preconditioned gradient, CGC, and one history,

then we are able to use fixed stepsizes for each direction and thus eliminate the computation required for

calculating the stepsizes at each iteration. Our numerical experiments demonstrate the effectiveness of

such a merger and the relevance of our theoretic study.

1.3 The Design of Robust Compressive Sensing Systems

1.3.1 Fifth Contribution - Online Learning Sensing Matrix and Sparsifying Dictionary
Simultaneously for Compressive Sensing

We call a signal xxx ∈ RN sparse if ‖xxx‖0� N or xxx can be represented sparsely by a prescribed sparsifying

dictionary ΨΨΨ ∈ RN×L, xxx = ΨΨΨθθθ+ eee with ‖θθθ‖0� L, where ‖ · ‖0 denotes the number of non-zeros. eee 6= 0

refers to the sparse representation error. By defining a sensing matrix ΦΦΦ ∈ RM×N with M < N, the theory

of CS claims that one can recover xxx uniquely from the measurements yyy = ΦΦΦxxx if xxx is sparse and ΦΦΦ and ΨΨΨ

satisfy the Restricted Isometry Property (RIP) [16]. In practice, many signals can be represented sparsely,

e.g., natural images are sparse under wavelet transforms [2]. Furthermore, one can also learn a ΨΨΨ [17] to

represent xxx sparsely. Note that the RIP is satisfied with high probability if ΦΦΦ is set to be a random matrix.

Our fifth contribution considers the problem of simultaneously learning the sensing matrix ΦΦΦ and

sparsifying dictionary ΨΨΨ (SMSD) on a large training dataset yielding a CS system which has a higher

signal reconstruction accuracy than choosing ΦΦΦ randomly and using a prescribed ΨΨΨ. To address the

formulated joint learning problem, we propose an online algorithm that consists of a closed-form solution

to optimize ΦΦΦ and a stochastic method to learn ΨΨΨ on a large dataset. Moreover, we also study the

convergence of our proposed method.

1.3.2 Sixth Contribution - Optimized Structured Sparse Sensing Matrices for Compres-
sive Sensing

Our sixth contribution addresses the efficiency of acquiring signals in CS systems. We propose a robust

structured sparse sensing matrix consisting of a sparse matrix with a few non-zero entries per row and

a dense base matrix which allows fast implementation. The robust structured sparse sensing matrix is

obtained through minimizing the distance between the Gram matrix of the equivalent dictionary ΦΦΦΨΨΨ, and

the target Gram matrix to reduce the averaged mutual coherence (cf. (7.1)). Moreover, a regularization

is added to enforce the robustness of the optimized structured sparse sensing matrix to the case eee 6= 0.

An alternating minimization algorithm with a global sequence convergence analysis is presented for the

formulated optimization problem.
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1.4 Thesis Structure

The thesis is organized as follows. In Chapter 2, we present the use of vector extrapolation techniques

to speed-up the existing solvers in RED. We introduce our second work in RED, weighted proximal

methods, in Chapter 3. Chapters 2 and 3 formulate the first part of this thesis. In Chapter 4, we explore the

adaption of Nesterov’s scheme for accelerating iterative methods for linear problems. Chapter 5 describes

the merger of multigrid optimization and SESOP as well as our theoretical study of this new accelerated

scheme. These two chapters consist of the second part of this dissertation. In Chapter 6, we discuss the

design of sensing matrix and sparsifying dictionary simultaneously for CS systems. Chapter 7 considers

the efficiency of acquiring a signal that we propose a way to design a structured sparse sensing matrix.

These two chapters compose the third part of this thesis. Finally, we conclude this thesis in Chapter 8 and

show some interesting future directions.

1.5 Notation

This thesis is a summary of the author’s publications, often treating different fields and applications.

However, the use of notation throughout this document is consistent in that, in general, we use bold

lowercase and uppercase letters to refer to vectors and matrices, respectively. The non-bold letters are

used to denote scalar quantities. Moreover, the specific meaning of the use of notation in each chapter

will be specified clearly as needed.
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Chapter 2

Acceleration of RED via Vector
Extrapolation

In this chapter, we report our first work about applying vector extrapolation to accelerating REgularization

by Denoising (RED). This chapter is based on the following published paper.

• Tao Hong, Yaniv Romano, and Michael Elad, Acceleration of RED via Vector Extrapolation,

Journal of Visual Communication and Image Representation, vol. 63, Aug. 2019.

2.1 Introduction

Inverse problems in imaging science address the reconstruction of clean images from their corrupted

versions. The corruption can be a blur, loss of samples, downscale or a more complicated operator (e.g., CT

and MRI), accompanied by a noise contamination. Roughly speaking, inverse problems are characterized

by two main parts: the first is called the forward model, which formulates the relation between the noisy

measurement and the desired signal, and the second is the prior, describing the log-probability of the

destination signal.

In recent years, we have witnessed a massive advancement in a basic inverse problem referred to

as image denoising [18, 19, 20, 21, 22, 23]. Indeed, recent work goes as far as speculating that the

performance obtained by leading image denoising algorithms is getting very close to the possible ceiling

[24, 25, 26]. This motivated researchers to seek ways to exploit this progress in order to address general

inverse problems. Successful attempts, as in [27, 28, 29], suggested an exhaustive manual adaptation

of existing denoising algorithms, or the priors used in them, to treat specific alternative missions. This

line of work has a clear limitation, as it does not offer a flexible and general scheme for incorporating

various image denoising achievements for tackling other advanced image processing tasks. This led to

the following natural question: is it possible to suggest a general framework that uses the abundance of

high-performance image denoising algorithms for addressing general inverse problems? Venkatakrishnan

et al. gave a positive answer to this question, proposing a framework called Plug-and-Play Priors (P3)

method [30, 31, 32]. Formulating the inverse problem as an optimization task and handling it via the

Alternating Direction Method of Multipliers (ADMM) scheme [33], P3 shows that the whole problem is

decomposed into a sequence of image denoising sub-problems, coupled with simpler computational steps.

The P3 scheme provides a constructive answer to the desire to use denoisers within inverse problems,
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but it suffers from several key disadvantages: (a) P3 does not define a clear objective function, since the

regularization used is implicit; (b) Tuning the parameters in P3 is extremely delicate; (c) since P3 is tightly

coupled with the ADMM, it has no flexibility with respect to the numerical scheme.

A novel framework named REgularization by Denoising (RED) [5] proposes an appealing alternative

while overcoming all these flaws. The core idea in RED is the use of the given denoiser within an

expression of regularization that generalizes a Laplacian smoothness term. The work in [5] carefully

shows that the gradient of this regularization is in fact the denoising residual. This, in turn, leads to several

iterative algorithms, all guaranteed to converge to the global minimum of the inverse problem’s penalty

function, while using a denoising step in each iteration.

The idea of using a state-of-the-art denoising algorithm for constructing an advanced prior for general

inverse problems is very appealing because: (a) it enables using the vast progress in image denoising for

solving challenging inverse problems as explained above; (b) it allows to usie the denoiser as a black-box.

However, a fundamental problem is the high complexity of typical denoising algorithms, which are

required to be activated many times in such a recovery process. Indeed, the evidence from the numerical

experiments posed in [5] clearly exposes this problem, in all the three methods proposed, namely the

steepest descent, the fixed-point (FP) strategy, and the ADMM scheme. Note that the FP method is

parameter free and the most efficient among the three, and yet this approach too requires the activation of

the denoising algorithms dozens of times for a completion of the recovery algorithm.

Our main contribution in this chapter is to address these difficulties by applying vector extrapolation

(VE) [34, 35, 36] to accelerating the FP algorithm shown in [5]. Our simulations illustrate the effectiveness

of VE for acceleration, saving more than 50% of the overall computations involved compared with the

native FP method.

The rest of this chapter is organized as follows. We review RED and the FP method in Section 2.2.

Section 2.3 recalls the VE acceleration idea. Several experiments on image deblurring and super-resolution,

which follows the ones given in [5], are carried out to exam the performance of VE, and these are brought

in Section 2.4. We conclude this chapter in Section 2.5.

2.2 REgularization by Denoising (RED)

This section reviews the framework of RED which uses denoising algorithms as image priors [5]. We also

describe its original solver based on the Fixed-Point (FP) method.

2.2.1 Inverse Problems as Optimization Tasks

From an estimation point of view, the signal xxx ∈ RN is to be recovered from its measurements yyy using the

posterior conditional probability P(xxx|yyy). Using maximum a posterior probability (MAP) and the Bayes

rule, the estimation task is formulated as:

xxx∗MAP = argmax
xxx

P(xxx|yyy) = argmax
xxx

P(yyy|xxx)P(xxx)
P(yyy)

= argmax
xxx

P(yyy|xxx)P(xxx) = argmin
xxx
− log{P(yyy|xxx)}− logP(xxx).

14



The third equality is obtained by the fact that P(yyy) does not depend on xxx. The term − log{P(yyy|xxx)} is

known as the log-likelihood `(yyy,xxx). A typical example is

`(yyy,xxx),− log{P(yyy|xxx)}= 1
2σ2 ‖HHHxxx− yyy‖2

2, (2.1)

referring to the case yyy = HHHxxx+nnn, where HHH is any linear degradation operator and nnn is a white mean zero

Gaussian noise with variance σ2. Now, we can write the MAP optimization problem as

xxx∗MAP = arg min
xxx∈RN

`(yyy,xxx)+αR(xxx), (2.2)

where α > 0 is a trade-off parameter to balance `(yyy,xxx) and R(xxx). R(xxx) , − logP(xxx) refers to the prior

that describes the statistical nature of xxx. This term is typically referred to as the regularization, as it is

used to stabilize the inversion by emphasizing the features of the recovered signal. In the following, we

will describe how RED activates denoising algorithms for composing R(xxx). Note that (2.2) defines a wide

family of inverse problems including, but not limited to, inpainting, deblurring, super-resolution, [37] and

more.

2.2.2 RED and the Fixed-Point Method

Define f (xxx) as an abstract and differentiable denoiser which admits a noisy image xxx and removes additive

Gaussian noise from it with assuming a prescribed noise energy. RED suggests applying the following

form as the prior:

R(xxx) =
1
2

xxxT (xxx− f (xxx)) , (2.3)

where T denotes the transpose operator. The term xxxT (xxx− f (xxx)) is an image-adaptive Laplacian regular-

izer, which favors either a small residual xxx− f (xxx), or a small inner product between xxx and the residual [5].

Plugging (2.3) into (2.2) leads to the following minimization task:

min
xxx∈RN

E(xxx), `(yyy,xxx)+α
1
2

xxxT (xxx− f (xxx)) . (2.4)

The prior R(xxx) of RED is a convex function and differentiable if the following two conditions are met:

• Local homogeneity: For any scalar c arbitrarily close to 1, we have f (cxxx) = c f (xxx).

• Strong passivity: The Jacobian ∇xxx f (xxx) is stable in the sense that its spectral radius is upper bounded

by one, ρ(∇xxx f (xxx))≤ 1.

With these two conditions, the gradient of E(xxx) is given by

∇xxxE(xxx) = ∇xxx`(yyy,xxx)+α(xxx− f (xxx)) . (2.5)

As discussed experimentally and theoretically in [5, Section 3.2], many state-of-the-art denoising al-

gorithms satisfy the aforementioned two conditions, and thus the gradient of (2.4) is simply evaluated

through (2.5). As a consequence, E(xxx) in (2.4) is a convex function if `(xxx,yyy) is convex, such as in the

case of (2.1). In such cases any gradient-based algorithm can be utilized to address (2.4) leading to its

global minimum.
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Note that evaluating the gradient of E(xxx) calls for one denoising activation, resulting in an expensive

operation as the complexity of effective denoising algorithms is typically high. Because of the slow

convergence speed of steepest descent and the high complexity of ADMM, the work reported in [5]

suggested using the FP method to handle the minimization task posed in (2.4). The development of the FP

method is rather simple, relying on the fact that the global minimum of (2.4) should satisfy the first-order

optimality condition, i.e., ∇xxx`(yyy,xxx)+α(xxx− f (xxx)) = 000. For the FP method, we use the following iterative

formula to solve this equation:

∇xxx`(yyy,xxxk+1)+α(xxxk+1− f (xxxk)) = 000. (2.6)

The explicit expression of (2.6) for `(yyy,xxx) = 1
2σ2 ‖HHHxxx− yyy‖2

2 is

xxxk+1 =

[
1

σ2 HHHT HHH +αIII
]−1[ 1

σ2 HHHT yyy+α f (xxxk)

]
, (2.7)

where III represents the identity matrix. We note that the matrix inversion here is calculated in the Fourier

domain for block-circulant HHH or using iterative methods for the more general cases. The convergence of

the FP method is guaranteed since

ρ

([
1

σ2 HHHT HHH +αIII
]−1

α∇xxx f (xxxk)

)
< 1,

where ρ(·) denotes the spectral radius.

Although the FP method is more efficient than steepest descent and ADMM, it still needs hundreds of

iterations, which means hundreds of denoising activations, to reach the desired minimum. This results in

a high complexity algorithm which we aim to address in this work. In the next section, we introduce an

accelerated technique called Vector Extrapolation (VE) to substantially reduce the amount of iterations in

the FP method.

2.3 Proposed Method via Vector Extrapolation

We begin this section by introducing the philosophy of vector extrapolation (VE) in linear and nonlinear

systems and then discuss three variants of VE, i.e., Minimal Polynomial Extrapolation (MPE), Reduced

Rank Extrapolation (RRE) and Singular Value Decomposition Minimal Polynomial Extrapolation (SVD-

MPE) [38, 36]. Efficient implementation of these three variants is also discussed. We refer the reader to

[36] and the references therein to explore further the VE technique. We end this section by embedding VE

in the FP method for RED, obtaining an acceleration of this scheme. Finally, we discuss the convergence

and stability properties of VE.

2.3.1 Vector Extrapolation in Linear and Nonlinear Systems

Consider a vector set {xxxi ∈ RN} generated via a linear process,

xxxi+1 = AAAxxxi +bbb, i = 0,1, · · · , (2.8)
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where AAA ∈ RN×N , bbb ∈ RN and xxx0 is the initial vector. If ρ(AAA) < 1, a limit point xxx∗ exists, being the FP

of (2.8), xxx∗ = AAAxxx∗+bbb. We next describe how VE works on such linear systems [39]. Define the defect

vector eeei as

eeei = xxxi− xxx∗, i = 0,1, · · · . (2.9)

Subtracting xxx∗ from both sides of (2.8) and using the fact that xxx∗ is the FP, we have eeei+1 = AAAeeei resulting

in

eeei+1 = AAAi+1eee0. (2.10)

We define a new extrapolated vector xxx(m,κ) as a weighted average of the form

xxx(m,κ) =
κ

∑
i=0

γixxxm+i, (2.11)

where
κ

∑
i=0

γi = 1. Substituting (2.9) into (2.11) and using (2.10) and ∑
κ
i=0 γi = 1, we have

xxx(m,κ) =
κ

∑
i=0

γi (xxx∗+ eeem+i) = xxx∗+
κ

∑
i=0

γieeem+i = xxx∗+
κ

∑
i=0

γiAAAieeem. (2.12)

Note that the optimal {γi} and κ should be chosen so as to force
κ

∑
i=0

γiAAAieeem = 0. This way, we attain the

FP through only one extrapolation step.

More broadly speaking, given a nonzero matrix BBB ∈ RN×N and an arbitrary nonzero vector uuu ∈ RN ,

we can find a unique polynomial P(z) with smallest degree to yield P(BBB)uuu = 000. Such a P(z) is called the

minimal polynomial of BBB with respect to the vector uuu. Notice that the zeros of P(z) are the eigenvalues of

BBB. Thus, assume that the minimal polynomial of AAA with respect to eeem can be represented as

P(z) =
κ

∑
i=0

cizi, cκ = 1 (2.13)

resulting in P(AAA)eeem = 000. So, we have

κ

∑
i=0

ciAAAieeem =
κ

∑
i=0

cieeem+i = 000. (2.14)

Multiplying both sides of (2.14) by AAA results in ∑
κ
i=0 ciAAAeeem+i = ∑

κ
i=0 cieeem+i+1 = 000, and thus we receive

κ

∑
i=0

cieeem+i =
κ

∑
i=0

cieeem+i+1 = 000. (2.15)

Subtracting these expressions gives

κ

∑
i=0

ci (eeem+i+1− eeem+i) =
κ

∑
i=0

ci (xxxm+i+1− xxxm+i) =
κ

∑
i=0

ciuuum+i = 000, (2.16)

where uuum+i = xxxm+i+1−xxxm+i, i = 0, · · · ,κ. This suggests that {ci} can be determined by solving the linear

equations posed in (2.16). Once obtaining {ci}, {γi} are calculated by γi =
ci

∑
κ
j=0 c j

. Note that ∑
κ
j=0 c j 6= 0

if III−AAA is not singular yielding ∑
κ
j=0 c j = P(1) 6= 0. Assuming κ is the degree of the minimal polynomial
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of AAA with respect to eeem, we can find a set of {γi} to satisfy ∑
κ
i=0 γi = 1 resulting in ∑

κ
i=0 γixxxm+i = xxx∗.

However, the degree of the minimal polynomial of AAA can be as large as N, which in our case is very high.

Moreover, we also do not have a way to obtain this degree with an easy algorithm. Because of these two

difficulties, some approximate methods are developed to extrapolate the next vector via the previous ones

and we will discuss them in Section 2.3.2.

Turning to the nonlinear case, denote by FFF the FP function to evaluate the next vector,

xxxi+1 = FFF(xxxi), i = 0,1, · · · , (2.17)

where FFF is an N-dimensional vector-valued function, FFF : RN →RN . We say xxx∗ is a FP of FFF if xxx∗ = FFF(xxx∗).

Expanding FFF(xxx) in its Taylor series yields

FFF(xxx) = FFF(xxx∗)+FFF ′(xxx∗)(xxx− xxx∗)+O(‖xxx− xxx∗‖2) as xxx→ xxx∗,

where FFF ′(·) is the Jacobian matrix of FFF(·). Recalling FFF(xxx∗) = xxx∗, we have

FFF(xxx) = xxx∗+FFF ′(xxx∗)(xxx− xxx∗)+O(‖xxx− xxx∗‖2) as xxx→ xxx∗.

Assuming the sequence xxx0,xxx1, . . . converges to xxx∗ (if ρ(FFF ′(xxx))< 1), it follows that xxxi will be close enough

to xxx∗ for all large i, and hence

xxxi+1 = xxx∗+FFF ′(xxx∗)(xxxi− xxx∗)+O(‖xxxi− xxx∗‖2), as i→ ∞.

Then, we rewrite this in the form

xxxi+1− xxx∗ = FFF ′(xxx∗)(xxxi− xxx∗)+O(‖xxxi− xxx∗‖2), as i→ ∞.

For large i, the vectors {xxxi} behave as in the linear system of the form (III−AAA)xxx = bbb through

xxxi+1 = AAAxxxi +bbb, i = 0,1, · · · ,

where AAA = FFF ′(xxx∗), bbb = [III−FFF ′(xxx∗)]xxx∗. This implies that the nonlinear system yields the same formula as

the linear one and motivates us to extrapolate the next vector by the previous ones as in linear systems.

Indeed, such an extension has been shown to be successful in various areas of science and engineering, e.g.,

computational fluid dynamics, semiconductor research, tomography, and geometrical image processing

[35, 40, 36].

2.3.2 Derivations of MPE, RRE, and SVD-MPE

We next discuss an approximate way to obtain the next vector by extrapolating the previous ones. Due to

the fact that the degree of the minimal polynomial can be as large as N and we cannot obtain it, an arbitrary

positive number is set as the degree, being much smaller than the true one. With such a replacement, the

linear equations in (2.16) become inconsistent and there does not exist a solution for {ci},cκ = 1 in the

18



ordinary sense. Alternatively, we solve instead

min
ccc
‖UUUm

κ ccc‖2
2, s.t. cκ = 1, (2.18)

where ccc =
[
c0 · · · cκ

]T
and UUUm

κ =
[
uuum · · · uuum+κ

]
. Then evaluating γi through ci/

(
∑

i=κ
i=0 ci

)
results

in the next vector xxx(m,κ) = ∑
κ
i=0 γixxxm+i as a new approximation. This method is known as Minimal

Polynomial Extrapolation (MPE) [41].

The detailed steps to obtain the next vector through MPE are shown in Algorithm 2.1. To solve the

constrained problem in (2.18), we suggest utilizing QR decomposition with the modified Gram-Schmidt

(MGS) [41, 42]. The MGS procedure for the matrix UUUm
κ is shown in Algorithm 2.2.

Algorithm 2.1 Minimal Polynomial Extrapolation (MPE)
Input: A sequence of vectors {xxxm,xxxm+1,xxxm+2, · · · ,xxxm+κ+1} is produced by the baseline algorithm (FP in

our case).
Output: A new vector xxx(m,κ).

1: Construct the matrix

UUUm
κ =

[
xxxm+1− xxxm, · · · ,xxxm+κ+1− xxxm+κ

]
∈ RN×(κ+1),

and then compute its QR factorization via Algorithm 2.2, UUUm
κ = QQQκRRRκ.

2: Denote rrrκ+1 as the κ+1th column of RRRκ without the last row and solve the following κ×κ upper
triangular system

RRRκ−1ccc′ =−rκ+1, ccc′ =
[
c0,c1, · · · ,cκ−1

]T
,

where RRRκ−1 is the previous κ columns of RRRκ without the last row. Finally, evaluate {γi} through{
ci

∑
k
i=0 ci

}
.

3: Compute ξξξ =
[
ξ0,ξ1, · · · ,ξκ−1

]T through

ξ0 = 1− γ0, ξ j = ξ j−1− γ j, j = 1, · · · ,κ−1.

4: Compute ηηη =
[
η0,η1, · · · ,ηκ−1

]T
= RRRκ−1ξξξ. Then we attain xxx(m,κ) = xxxm +QQQκ−1ηηη as the new initial

vector where QQQκ−1 represents the previous κ columns of QQQκ.

Algorithm 2.2 Modified Gram-Schmidt (MGS)
Output: QQQκ and RRRκ (ri j denotes the (i, j)th element of RRRκ and qqqi and uuui represent the ith column of QQQκ

and UUUm
κ , respectively.).

1: Compute r11 = ‖uuu1‖2 and qqq1 = uuu1/r11.
2: for i = 2, · · · ,κ+1 do
3: uuu(1)i ← uuui.
4: for j = 1, · · · , i−1 do
5: r ji← qqqT

j uuu( j)
i and uuu( j+1)

i ← uuu( j)
i − r jiqqq j.

6: end for
7: rii←‖uuu

(i)
i ‖2.

8: qqqi← uuu(i)i /rii.
9: end for

Now we discuss the other two variants of VE, i.e., Reduced Rank Extrapolation (RRE) [41] and

SVD-MPE [38]. The main differences between RRE, MPE, and SVD-MPE is at Step 2 in Algorithm 2.1
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regarding the evaluation of {γi}. In RRE and SVD-MPE, we utilize the following methods to obtain {γi}:

RRE: Solving RRRT
κ RRRκddd = 111 through forward and backward substitution, we obtain γγγ through ddd

∑i di
where

di is the ith element of ddd. Actually, such a formulation of γγγ is the solution of:

min
γγγ
‖UUUm

κ γγγ‖2
2, s.t. ∑

i
γi = 1. (2.19)

SVD-MPE: Computing the SVD decomposition of RRRκ =UUUΣΣΣVVV T , we have γγγ = vvvκ+1
∑i vvvi,κ+1

where vvvκ+1 and

vvvi,κ+1 represent the last column and the (i,κ+1)th element of matrix VVV , respectively.

Remark 2.1.

• Observing the derivations of MPE, SVD-MPE and RRE, we notice that RRE’s solution must exist

unconditionally, while MPE and SVD-MPE may not exist because the sum of {ci} and {vi,κ+1} in

MPE and SVD-MPE may become zero. Thus RRE may be more robust in practice [40]. However,

MPE and RRE are related, as revealed in [43]. Specifically, if MPE does not exist, we have

xxxRRE
(m,κ) = xxxRRE

(m,κ−1). Otherwise, the following holds

µκxxxRRE
(m,κ) = µκ−1xxxRRE

(m,κ−1)+ vκxxxMPE
(m,κ), µκ = µκ−1 + vκ,

where µκ, µκ−1, and vκ are positive scalars depending only on xxxRRE
(m,κ), xxxRRE

(m,κ−1) and xxxMPE
(m,κ), respectively.

Furthermore, the performance of MPE and RRE is similar – both of the methods either perform

well or work poorly [36].

• Observe that we only need to store κ+2 vectors in memory at all steps in Algorithm 2.2. Specifically,

formulating the matrix UUUκ
m, we overwrite the vector xxxm+i with uuum+i = xxxm+i−xxxm+i−1 when the latter

is computed and only xxxm is always in the memory. Next, uuum+i is overwritten by qqqi, i = 1, · · · ,κ+1

in computing the matrix QQQκ. Thus, we do not need to save the vectors xxxm+1, · · · ,xxxm+κ+1, which

implies that no additional memory is required in running Algorithm 2.2.

2.3.3 Embedding Vector Extrapolation in the Baseline Algorithm

In this part, we introduce VE in its cycling formulation for practical use. One cycle means we activate the

baseline algorithm to produce {xxxi} and then utilize VE once to evaluate the new vector as a novel initial

value. Naturally, we repeat such a cycle many times. The steps of utilizing VE in its cycling mode are

shown in Algorithm 2.3. A few comments are in order:

• In practice, we utilize VE in its cycling formulation. Specifically, the iterative form shown in

Algorithm 2.3 is called full cycling [36]. To save the complexity of computing {γi}, one may reuse

the previous {γi}, a method known as cycling with frozen γi. Parallel VE can also be developed if

more machines are available. Details of the last two strategies are outside the scope of this chapter.

We refer the reader to [36] for more information.

• Numerical experience also indicates that cycling with even moderately large m > 0 will avoid

stalling from happening [44]. Moreover, we also recommend setting m > 0 when the problem

becomes challenging to solve.
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• In our case, the termination criterion in Algorithm 2.3 can be the number of total iterations (the

number of calls to the baseline algorithm) or the difference between consecutive two vectors.

Furthermore, we also recommend additional iterations to activate the baseline algorithm after

terminating the VE, which can stabilize the accelerated algorithm in practice.

Algorithm 2.3 Baseline Algorithm + Vector Extrapolation
Input: Choose nonnegative integers m and κ and an initial vector xxx0. The baseline algorithm is the FP

method, as given in (2.7).
Output: xxx∗.

1: while 1 do
2: Obtain the series of xxxi through the baseline algorithm where 1≤ i≤ m+κ+1, and save xxxm+i for

0≤ i≤ κ+1 to formulate UUUκ
m.

3: Call Algorithm 2.1 to obtain xxx(m,κ).
4: If the termination of the algorithm is satisfied, set xxx∗ = xxx(m,κ) and break, otherwise, set xxx(m,κ) as the

new initial value xxx0 and go to Line 2.
5: end while

2.3.4 Convergence and Stability Properties

We mention existing results regarding the convergence and stability properties of VE for understanding

this technique better. A rich literature has examined the convergence and stability properties of RRE,

MPE, and SVD-MPE in linear systems [45, 46]. Assuming the matrix AAA is diagonalizable, then in the kth

iteration xxxk should have the form xxxk = xxx∗+∑
κ
i=1 vvviλ

k
i where (λi,vvvi) are some or all of the eigenvalues and

corresponding eigenvectors of AAA, with distinct nonzero eigenvalues. By ordering λi as |λ1| ≥ |λ2| ≥ · · · ,
the following asymptotic performance holds for all of the three variants of VE when |λk|> |λk+1|:

xxx(m,κ)− xxx∗ = O(λm
κ+1) as m→ ∞. (2.20)

This implies that the sequence {xxx(m,κ)}∞
m=0 converges to xxx∗ faster than the original sequence {xxxk}.

As shown in (2.20), for a large m, (2.8) reduces the contributions of the smaller λi to the error

xxx(m,κ)− xxx∗, while VE eliminates the contributions of the κ largest λi. This indicates that xxx(m,κ)− xxx∗ is

smaller than each of the errors xxxm+i− xxx∗, i = 0,1, · · · ,κ, when m is large enough. We mention another

observation that an increasing κ generally results in a faster convergence of VE. However, a large κ has

to increase the storage requirements and also requires a much higher computational cost. Numerical

experiments indicate that a moderate κ can already work well in practice.

If the following condition is held, we say VE is stable:

sup
m

κ

∑
i=0
|γ(m,κ)

i |< ∞. (2.21)

Here, we denote {γi} by {γ(m,κ)
i } to show their dependence on m and κ. If (2.21) holds true, the error in xxxi

will not magnify severely. As shown in [45, 46, 47], MPE and RRE obey such a stability property.

For nonlinear systems, the analysis of convergence and stability becomes extremely challenging. One

of the main results is the quadratic convergence theorem [48, 39, 49]. This theorem is built on one special

assumption that κ is set to be the degree of the minimal polynomial of FFF ′(xxx∗). The proof of the quadratic
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convergence was shown in [48]. In subsequent work, Smith, Ford and Sidi noticed that there exists a gap

in the previous proof [39]. Jbilou et al. suggested two more conditions in order to close the gap [49]:

• The matrix FFF ′(xxx∗)− III is nonsingular.

• FFF ′(·) satisfies the following Lipschitz condition:

‖FFF ′(xxx)−FFF ′(yyy)‖ ≤ L‖xxx− yyy‖ L > 0.

Surprisingly, these two conditions are met by the RED scheme. The first condition is satisfied by the fact

ρ

([
1

σ2 HHHT HHH +αIII
]−1

α∇xxx f (xxx)

)
< 1.

The second one is also true, due to the assumption in RED that the denoiser f (xxx) is differentiable. So we

claim that it is possible for VE to solve RED with quadratic convergence rate.

Although VE can lead to a quadratic convergence rate, trying to achieve such a rate may not be

realistic because κ may need to be as large as N. However, we may obtain a linear but fast convergence in

practice with even moderate values of m and κ, which is also demonstrated in the following numerical

experiments.

2.4 Experimental Results

We follow the same experiments of image deblurring and super-resolution as presented in [5] to investigate

the performance of VE in acceleration. The trainable nonlinear reaction diffusion (TNRD) method [23]

is chosen as the denoising engine. Mainly, we choose the FP method as our baseline algorithm. For

a fair comparison, the same parameters suggested in [5] for different image processing tasks are used

in our experiments. In [5], the authors compared RED with other algorithms in image deblurring and

super-resolution tasks, showing its superiority. As the main purpose in this chapter is to present the

acceleration of our method for solving RED, we omit the comparisons with other popular algorithms.

In the following, we mainly show the acceleration of applying MPE with FP for solving RED first and

then discuss the choice of parameters in VE, i.e., m and κ. In addition, we compare our method with

three other methods, steepest descent (SD), Nesterov’s acceleration [50], and Limited-memory BFGS

(L-BFGS) [51]. Note that we need to determine a proper stepsize for the above methods [51]. However,

evaluating the objective value or gradient in RED is expensive implying that any line-search method

becomes prohibitive. Note that, in contrast, in our framework as described in Algorithm 2.3 does not

suffer from such a problem. In the following, we manually choose a fixed stepsize for getting a good

convergence behavior. Finally, we compare the differences between RRE, MPE, and SVD-MPE. All of

the experiments are conducted on a workstation with Intel(R) Xeon(R) CPU E5-2699 @2.20GHz.

2.4.1 Image Deblurring

In this experiment, we degrade the test images by convolving with two different point spread functions

(PSFs), i.e., 9×9 uniform blur and a Gaussian blur with a standard derivation of 1.6. In both of these

cases, we add an additive Gaussian noise with σ =
√

2 to the blurred images. The parameters m and κ in

22



Algorithm 2.3 are set to 0 and 5 for the image deblurring task. Additionally, we apply VE to the case where

the baseline algorithm is SD, called SD-MPE, with the parameters m = 0 and κ = 8. The value of the

cost function and peak signal to noise ratio (PSNR) versus iteration or CPU time are given in Figures 2.2

and 2.31. These correspond to both a uniform and a Gaussian blur kernels, all tested on the “Starfish”

image. Clearly, we observe that SD is the slowest algorithm. Surprisingly, SD-MPE and Nesterov’s

method yield almost the same convergence speed, despite their totally different scheme. Moreover, We

note that FP is faster than L-BFGS, Nesterov’s method, and SD-MPE. Undoubtedly, FP-MPE is the fastest

one, both in terms of iterations and CPU time, which indicates the effectiveness of MPE’s acceleration. To

provide a visual effect, we show the change in reconstructed quality of different algorithms in Figure 2.1.

Clearly, the fourth column of FP-MPE achieves the best reconstruction faster, while other methods need

more iterations to obtain a comparable result.

Nine additional test images suggested in [5] are also included in our experiments, in order to investigate

the performance of VE further. In this experiment we focus on the comparison between FP-MPE and FP

for the additional images. We run the native FP method 200 iterations first and denote the final image by

xxx∗. Clearly, the corresponding cost-value is E(xxx∗). We activate Algorithm 2.3 with the same initial value

as used in the FP method to examine how many iterations are needed to attain the same or lower objective

value than E(xxx∗). The final number of iterations with different images are given in Table 2.1. Clearly, an

acceleration is observed in all the test images in the image deblurring task.

2.4.2 Image Super-resolution

We generate a low resolution image by blurring the ground truth one with a 7×7 Gaussian kernel with

standard derivation 1.6 and then downsample by a factor of 3. Afterwards, an additive Gaussian noise

with σ = 5 is added to the resulting image. The same parameters m and κ used in the deblurring task for

FP-MPE are adopted here. For SD-MPE, the parameters m and κ are set to 1 and 10, respectively. We

choose “Plants” as our test image because it needs more iterations for FP-MPE to converge. As observed

from Figure 2.4, while L-BFGS and the Nesterov’s method are faster than the FP method, our acceleration

method (FP-MPE) is quite competitive with both. Furthermore, we investigate all of the test images as

shown in [5] to see how many iterations are needed for MPE to achieve the same or lower cost compared

with the FP method. The results are shown in Table 2.2. As can be seen, MPE works better than the FP

method indicating an effective acceleration for solving RED.

2.4.3 The Choice of the Parameters and the Differences between RRE, MPE, and SVD-
MPE

We conclude by discussing the robustness with respect to the choice of parameters m and κ for the MPE

algorithm. To this end, the single image super-resolution task is chosen as our study. Furthermore, we

choose to demonstrate this robustness on the “Plants” image since it required the largest number of

iterations in the MPE recovery process. As seen from Figures 2.5(a) to 2.5(c), MPE always converges

faster than the regular FP method. Moreover, we also observe that a lower objective value is attained by

1The goal of this chapter is to investigate the performance of solving RED with VE rather than the restoration results.
Therefore, we present the recovered PSNR versus iteration or running time. One can utilize some no-reference quality metrics
like NFERM [52] and ARISMc [53] to further examine the restoration results.

23



(a) SD: 22.56dB (input)→ 25.65dB→ 26.47dB→ 26.97dB→ 27.35dB→ original.

(b) SD-MPE: 22.56dB (input)→ 27.46dB→ 28.62dB→ 29.29dB→ 29.69dB→ original.

(c) Nesterov: 22.56dB (input)→ 27.44dB→ 28.78dB→ 29.43dB→ 29.79dB→ original.

(d) LBFGS: 22.56dB (input)→ 27.80dB→ 29.52dB→ 30.14dB→ 30.40dB→ original.

(e) FP: 22.56dB (input)→ 28.91dB→ 29.76dB→ 30.13dB→ 30.31dB→ original.

(f) FP-MPE: 22.56dB (input)→ 30.07dB→ 30.55dB→ 30.60dB→ 30.60dB→ original.

Figure 2.1: Reconstruction of different algorithms in various iterations for the Image deblurring with
uniform kernel. From left to right: Blurred one→ #20→ #40→ #60→ #80→ Ground truth.

MPE. Notice that MPE has some oscillations because it is not a monotonically accelerated technique.

However, we still see a lower cost is achieved if additional iterations are given.

In panel (d) of Figure 2.5, an optimal pair of m and κ is chosen for MPE, RRE, and SVD-MPE for

the single image super-resolution task with the “Plants” image. The optimal m and κ are obtained by
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(d) PSNR versus CPU time.

Figure 2.2: Image deblurring - uniform kernel, “Starfish” image.

searching in the range [0,10] with κ≥ 2, seeking the fastest convergence for these three methods. We

see that all three methods yield an acceleration and a lower cost, demonstrating the effectiveness of the

variants of VE. Moreover, we see that SVD-MPE converges faster at the beginning, but MPE yields the

lowest final cost.

2.5 Conclusion

The work reported in [5] introduced RED – a flexible framework for using arbitrary image denoising

algorithms as priors for general inverse problems. This scheme amounts to iterative algorithms in which

the denoiser is called repeatedly. While appealing and quite practical, there is one major weakness to

the RED scheme – the complexity of denoising algorithms is typically high which implies that the use

of RED is likely to be costly in run-time. This work aims at deploying RED efficiently, alleviating the

above described shortcoming. An accelerated technique is proposed in this chapter, based on the Vector

Extrapolation (VE) methodology. The proposed algorithms are demonstrated to substantially reduce the

number of iterations required for the overall recovery process. We also observe that the choice of the

parameters in the VE scheme is robust.
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Figure 2.3: Image deblurring - Gaussian kernel, “Starfish” image.
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Table 2.1: The number of iterations with different images for FP and FP-MPE in image deblurring task to
attain the same cost.
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Table 2.2: The number of iterations with different images for FP and FP-MPE in image super-resolution
task to attain the same cost.

Super-Resolution, scaling = 3, σ = 5
Image Butterfly Flower Girl Parth. Parrot Raccoon Bike Hat Plants

RED: FP-TNRD 200 200 200 200 200 200 200 200 200
RED: FP-MPE-TNRD 60 65 50 70 55 60 60 50 70
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Figure 2.4: Image super-resolution, “Plant” image.

28



0 20 40 60 80 100 120 140 160 180 200

Iteration

1800

1900

2000

2100

2200

2300

2400

C
os

t

Plants-Downscale

(a) m = 0 and κ = 3,5,10.

0 20 40 60 80 100 120 140 160 180 200

Iteration

1800

1900

2000

2100

2200

2300

2400

C
os

t

Plants-Downscale

(b) m = 5 and κ = 3,5,10.

0 20 40 60 80 100 120 140 160 180 200

Iteration

1800

1900

2000

2100

2200

2300

2400

C
os

t

Plants-Downscale

(c) m = 10 and κ = 3,5,10.

0 20 40 60 80 100 120 140 160 180 200

Iteration

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

C
os

t

Plants-Downscale

FP
FP-MPE
FP-RRE
FP-SVDMPE

(d) Comparison between MPE, RRE and SVD-MPE.

Figure 2.5: Exploring the robustness to the choice of the parameters in MPE, and the differences between
the three VE schemes. All these graphs correspond to the test image “Plants” for the single image
super-resolution task.
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Chapter 3

Solving RED with Weighted Proximal
Methods

In this chapter, we report our study on employing weighted proximal methods for RED, which is faster

than the technique described in Chapter 2. This chapter is summarized in the following published paper:

• Tao Hong, Irad Yavneh, and Michael Zibulevsky, Solving RED with Weighted Proximal Methods,

IEEE Signal Processing Letters, vol. 27, pp. 501-505, Mar. 2020.

Since the work presented in this chapter solves the same problem as shown in Chapter 2, we omit the

introduction and the problem formulation and discuss our technique directly. Note that the notation used

in Chapter 2 is adapted in this chapter as well.

3.1 Weighted Proximal Methods

Consider the following composite problem and assume its solution set is nonempty,

min
xxx∈RN

F (xxx), g(xxx)+h(xxx), (3.1)

where g and h are convex and differentiable. Denote the proximal operator by

proxh,BBB(x̂xx) = arg min
uuu∈RN

{
h(uuu)+

1
2
‖uuu− x̂xx‖2

BBB

}
, (3.2)

where BBB is a symmetric positive definite matrix called the weighting and ‖ · ‖BBB denotes the BBB-norm,

‖qqq‖BBB =
√

qqqT BBBqqq. With these, we describe the explicit form of WPMs for (3.1) in Algorithm 3.1 [54, Chap.

10.7.5]. Note that by setting BBB = βIII with β > 0, we recover the proximal gradient (PG) method. Usually,

PG is used for (3.1) when h is nonsmooth [55], whereas here we use it even though h is differentiable. We

do this for computational efficiency, knowing that applying the denoiser is the most expensive part of the

solution process.

To apply Algorithm 3.1 to RED, we set g(xxx) = αR(xxx) = α

2 xxxT (xxx− f (xxx)) and h(xxx) = 1
2σ2 ‖HHHxxx− yyy‖2

2.

If h(xxx) is convex, solving (3.2) is equivalent to satisfying the first-order optimality condition,

∇uuuh(uuu)+BBB(uuu− x̂xx) = 000. (3.3)
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Algorithm 3.1 Weighed Proximal Methods (WPMs)
Input: xxx0.
Output: xxx∗.

1: for k = 0,1, . . . do
2: pick the step-size ak and the weighting BBBk.
3: xxxk+1← proxakh,BBBk

(
xxxk−akBBB−1

k ∇xxxg(xxxk)
)
.

4: end for

Substituting x̂xx← xxxk− akBBB−1
k ∇xxxg(xxxk), h(uuu)← akh(uuu) and uuu← xxxk+1, at the kth iteration into (3.3) and

rearranging, we obtain( ak

σ2 HHHT HHH +BBBk

)
xxxk+1 =

ak

σ2 HHHT yyy+BBBkxxxk−akα(xxxk− f (xxxk)) . (3.4)

In this chapter, we use the conjugate gradient (CG) method to approximately solve (3.4) for xxxk+1.

Next we discuss possible practical choices for the weighting BBBk. Note first that if we set BBBk = αIII,

where III is the identity matrix, and select the step-size ak = 1, (3.4) is reduced to the PG method and

we recover the FP method. Moreover, by using the accelerated version of Algorithm 3.1 (cf. [54, Chap.

10.7.5]) we get APG [56]. We now propose a more elaborate approach of choosing some approximation

to the Hessian of αR(xxx) as the weighting. (Because of the abstract denoiser in R(xxx), the exact Hessian is

not computable.) Specifically, we choose the symmetric-rank-one (SR1) approximation to the Hessian [51,

Chap. 6.2], as is used in quasi-Newton methods. The SR1 approximation is described in Algorithm 3.2.

This choice yields faster convergence in our experiments than either FP or APG, as shown below. We

henceforth use WPM to denote Algorithm 3.1 with the weighting chosen by Algorithm 3.2.

Algorithm 3.2 SR1 updating
Input: k = 1, γ = 1.25, δ = 10−8, xxxk, xxxk−1, ∇g(xxxk), ∇g(xxxk−1).
Output: BBBk.

1: if k = 1 then
2: BBBk← αIII.
3: else
4: Set sssk← xxxk− xxxk−1 and mmmk← ∇g(xxxk)−∇g(xxxk−1).

5: Calculate τ← γ
‖mmmk‖2

2
〈sssk,mmmk〉 .

6: if τ < 0 then
7: BBBk← αIII.
8: else
9: HHH0← τIII.

10: if | 〈mmmk−HHH0sssk,sssk〉 | ≤ δ‖sssk‖2‖mmmk−HHH0sssk‖2 then
11: uuuk← 000.
12: else
13: uuuk← mmmk−HHH0sssk√

〈mmmk−HHH0sssk,sssk〉
.

14: end if
15: BBBk← HHH0 +uuukuuuT

k .
16: end if
17: end if
18: Return

Unlike the traditional SR1, we formulate each BBBk from the initial HHH0 rather the previous iterate BBBk−1

[51]. Moreover, we scale HHH0 by γ > 1 as suggested in [57], which we found useful in practice. In the
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practical implementation of Algorithm 3.2, we efficiently represent BBBk as a matrix-vector multiplication

operator rather than as an explicit matrix.

In general, the step-size ak in Algorithm 3.1 needs to be chosen by some line search process to

guarantee monotonically decreasing objective values at each iteration. However, because evaluating the

objective value in RED requires calling the denoiser, standard line search methods may dramatically

increase the complexity of the algorithm. To maintain a low computational cost, we fix ak = 1 and reduce

the step-size by half only if the objective value exhibits a relative growth above some threshold, i.e.,

E(xxxk+1)−E(xxxk)> εE(xxxk+1), where we use ε = 10−2 in all our experiments. In practice, we found that

we never needed to reduce the step-size.

In this chapter we only investigate the SR1 approximation to the Hessian of αR(xxx). We acknowledge

that a more accurate Hessian estimate may prove to be even more cost-effective for RED, but leave such

investigation to future work. Because we use an approximate Hessian for the weighting, our algorithm is

equivalent to a quasi-newton proximal method. It follows that if both g(xxx) and h(xxx) are strongly convex

and their gradients are Lipschitz continuous, WPM with SR1 estimation, an appropriate step-size ak,

and exact solution of (3.2), converges linearly; see details in [58]. Because we depart from these strict

requirements for efficiency, we cannot claim provable convergence in our implementation. However, in

all our experiments WPM converged. Finally, we note that [56] challenges the validity in practice of the

underlying assumptions of RED for most denoisers, concluding that (2.5) is not truly the gradient of (2.4).

Nevertheless, setting (2.5) to zero, as is the objective of all the algorithms we discuss here, remains a most

attractive method for signal recovery.

3.2 Numerical Experiments

In this section we investigate the performance of solvers for RED. Following [5], we perform our tests on

image deblurring and super-resolution tasks and use the trainable nonlinear reaction diffusion (TNRD)

[23] method as the abstract denoiser. We remark that one can adopt deep denoising techniques instead

of TNRD, since the differentiability requirement of the denoiser is not mandatory in practice [56]. This

may possibly lead to improved results in practice, but we do not investigate such options here. Also,

since the authors in [5] already show the superiority of RED for image deblurring and super-resolution

tasks compared with other popular algorithms, we largely omit such comparisons in this chapter and

concentrate on computational efficiency. Moreover, the experiments conducted in [6] demonstrated that

the FP method converges faster than LBFGS and Nesterov’s acceleration for RED. Therefore, we only

compare WPM to FP [5], FP-MPE [6], and APG [56]. All of the experiments are carried out on a laptop

with Intel i7−6500U CPU @2.50GHz and 8GB RAM.

For image deblurring, the image is degraded by convolving with a point spread function (PSF), 9×9

uniform blur or a Gaussian blur with a standard derivation 1.6, and then adding Gaussian noise with

mean zero and σ =
√

2. The recovered peak-signal-to-noise ratio (PSNR) versus the number of denoiser

evaluations (left column) and running time (right column) when using RED for the “Starfish” image are

shown in Figure 3.2. We find that the performances of FP-MPE and APG are similar, whereas WPM is

more efficient than both, requiring less denoiser evaluations and running time to achieve a comparable

PSNR. These results also indicate that indeed the denoiser dominates the complexity of solving RED.

Next, we test the algorithms on image super-resolution. A low resolution image is generated by
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Deblurring – Uniform

(a) Original (b) Blurred (c) 27.94 (d) 28.60 (e) 29.01 (f) 29.85

Deblurring – Gaussian

(g) Original (h) Blurred (i) 30.13 (j) 30.91 (k) 31.23 (l) 31.63

Super-resolution

(m) Original (n) LR (o) 24.56 (p) 25.13 (q) 25.38 (r) 26.20

Figure 3.1: PSNR (dB) of the image recovered by, from left to right, FP, FP-MPE, APG, and WPM, after
10 denoiser evaluations. LR stands for low-resolution.

blurring a high-resolution image with a 7× 7 Gaussian kernel with standard derivation 1.6, and then

downscaling by a factor of 3. To the resulting image we add Gaussian noise with mean zero and σ = 5,

resulting in our deteriorated image. The PSNR of the recovered fine-resolution image versus the number

of denoiser evaluations (left) and running time (right) for the “Plants” image are presented in Figure 3.3.

Again, we observe that WPM requires less denoiser evaluations and running time to achieve a comparable

PSNR.

Examining the performance of the algorithms further, we run them on eight additional images tested

in [5]. For each image, we run the FP method with 200 denoiser evaluations and take the final PSNR as a

benchmark. Then we examine how many denoiser evaluations are needed for APG, FP-MPE, and WPM,

to achieve a similar PSNR. The results are listed in Table 3.1. Evidently, with the exception of “Boats” and

“House” in the deblurring task, we observe that WPM requires the smallest number of denoiser evaluations

to achieve a comparable PSNR, demonstrating its efficiency for solving RED. Additionally, we present the

recovered results of the “Starfish” and “Leaves” images from deblurring with uniform and Gaussian blurs,

respectively, and the “Butterfly” image from super-resolution in Figure 3.1 to visualize the effectiveness

of RED solved by WPM.

3.3 Conclusion

In this chapter, we propose a general framework for RED called weighted proximal methods (WPMs). By

setting BBBk = αIII and ak = 1, we retrieve the FP and APG methods. However, by choosing the weighting

to be an approximation to the Hessian of αR(xxx), we obtain a more efficient algorithm. The experiments
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(a) Deblurring with uniform blur.

10 0 10 1 10 2 10 3

Denoiser Evaluations

29.5

30

30.5

31

31.5

32

32.5

P
S

N
R

Starfish-GaussianBlur

FP
FP-MPE
APG
WPM

100 101 102 103

Seconds

29.5

30

30.5

31

31.5

32

32.5

P
S

N
R

Starfish-GaussianBlur

FP
FP-MPE
APG
WPM

(b) Deblurring with Gaussian blur.

Figure 3.2: PSNR versus denoiser evaluations (left column) and CPU time (right column) for deblurring
the “Starfish” image.
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Figure 3.3: PSNR versus denoiser evaluations (left) and CPU time (right) for super-resolution of the
“Plants” image.

on image deblurring and super-resolution tasks demonstrate that WPM with a simple and inexpensive

approximation to the Hessian can substantially reduce the overall number of denoiser evaluations in the
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Table 3.1: Denoiser evaluations required to attain a similar PSNR. The first and second rows per each
image refer to image deblurring and the third row refers to super-resolution. The minimal number of
denoiser evaluations is marked in bold.

FP-MPE APG WPM

Butterfly
54 34 222555
54 26 111777
80 51 222666

Boats
24 222000 21
60 34 222222
36 20 111222

House
24 111888 19
62 26 222555
18 15 111000

Parrot
39 30 222000
52 40 333666
49 31 222888

Lena
48 34 222999
47 16 111555
37 26 111888

Barbara
14 12 111111
48 23 111666
17 15 111111

Peppers
42 29 222222
41 40 333444
38 30 222888

Leaves
50 41 333444
36 18 111444
60 41 111222

recovery process, usually resulting in significant speedup. In future work we aim to design better Hessian

approximations in order to accelerate the computation further.
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Chapter 4

On Adapting Nesterov’s Scheme to
Accelerate Iterative Methods for Linear
Problems

In this chapter, we report our work on adapting Nesterov’s scheme to accelerate iterative methods for

linear problems, based on the following paper submitted for publication:

• Tao Hong and Irad Yavneh, On Adapting Nesterov’s Scheme to Accelerate Iterative Methods for

Linear Problems, arXiv:2102.09239, Submitted to Numerical Linear Algebra with Applications.

4.1 Introduction

Many scientific computing applications require solving linear systems of equations of the form [9, 59]:

AAAxxx = fff , (4.1)

where AAA ∈ RN×N is a sparse, large-scale, ill-conditioned matrix. For example, AAA may be a discretization

of an elliptic partial differential equation (PDE) or system. Because direct solvers are relatively expensive,

especially for 3D problems, iterative methods are often preferred, e.g., successive over-relaxation or

multigrid. These are very often used to advantage as preconditioners for Krylov subspace acceleration

methods. The LOPCG method for eigenvalue problems[60, 61] is an alternative acceleration method,

which uses a linear combination of two consecutive iterates, together with a preconditioned residual,

to construct the next iterate such that the residual norm at the current step is minimized. Motivated

by Nesterov’s scheme developed in the framework of convex optimization, we consider adapting this

approach to accelerating iterative methods for linear problems, using a fixed optimal scalar parameter for

which we derive an explicit formula.

Nesterov’s well-known scheme for accelerating gradient descent for convex optimization problems

[62, 50] has attracted much attention in the optimization community over the years. Given an unconstrained

optimization problem,

xxx∗ = arg min
xxx∈RN

F(xxx),
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the kth iteration of Nesterov’s scheme is defined as follows:

xxxx+1 = BBB(yyyk),

yyyk+1 = xxxk+1 + ck(xxxk+1− xxxk),
(4.2)

where yyyk ∈ RN is an intermediate iterate and BBB(·) represents some iterative method, e.g., gradient descent.

In the classical method, an optimal analytical sequence ck is introduced for convex problems with BBB(·)
defined by gradient descent [50]. We refer the reader to [63, 64] and references therein for further

discussion of Nesterov’s scheme and the choice of ck with some restarting strategies. Over the years,

Nesterov’s scheme has been extended to more general BBB(·) operators, including the proximal operator

[65], coordinate descent [66], alternating least squares [67], second-order methods [68], and stochastic

methods [69].

In this chapter, we focus on linear systems (4.1) and adapt (4.2) to acceleration of stationary iterative

methods. Since the problem of interest is linear, we simplify (4.2) as follows:

xxxx+1 = BBByyyk +Constant,

yyyk+1 = xxxk+1 + ck(xxxk+1− xxxk),
(4.3)

where we use the fixed matrix BBB ∈ RN×N (called iteration matrix) plus an appropriate constant vector

to represent the operator BBB(·). Below, we show that if all the eigenvalues of BBB are real, then an optimal

fixed ck can be found analytically, depending on the smallest and largest eigenvalues of BBB. We note that a

similar analysis was performed in [70] for the restricted case of gradient descent and the assumption that

all eigenvalues of BBB are real and of the same sign. Furthermore, [70] also studied the complex eigenvalues

case and proved a lower and upper ACF bound when all complex eigenvalues lie in a prescribed rectangular

region. Since the additional computations in (4.3) are negligible, we suggest that (4.3) may in some

cases prove to be competitive for accelerating stationary iterative methods. Because ck will be fixed,

we discard the subscript k in the rest of the chapter. Interestingly, we find that the results developed

for BBB whose eigenvalues are real are also valid for BBB which has complex eigenvalues within a relatively

large domain. Moreover, a “valid” region in the complex plane, defined as a region where existence

of complex eigenvalues of BBB does not influence the optimal c or the asymptotic convergence factor

(ACF), is explicitly identified, dependent on the smallest and largest real eigenvalues. Furthermore, we

compare Nesterov’s scheme to a “restricted-information” (RI) Chebyshev acceleration, where we choose

the optimal parameters based on the same information as required for Nesterov’s scheme, i.e., the smallest

and largest real eigenvalues of BBB [71]. Our comparison indicates that Nesterov’s scheme is more robust

than RI Chebyshev acceleration with respect to the existence of complex eigenvalues for BBB.

The rest of this chapter is organized as follows. The analytical derivation of c for BBB with only

real eigenvalues is given in Section 4.2. The robustness of these results in cases where BBB also has

complex eigenvalues is studied in Section 4.3, including a comparison to RI Chebyshev acceleration. In

Section 4.4 we demonstrate the usefulness of the proposed method in accelerating multigrid solution of

some second-order elliptic boundary value problems, and conclusions and future work are summarized in

Section 4.5.
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4.2 Optimal Acceleration

Representing yyyk by the previous iterates xxxk and xxxk−1, we obtain

xxxk+1 = BBB(xxxk + c(xxxk− xxxk−1))+Constant. (4.4)

Denote eeek = xxxk − xxx∗, where xxx∗ is the sought solution. Subtracting xxx∗ from both sides of (4.4) and

substituting BBBxxx∗+Constant = xxx∗, we arrive at

eeek+1 = BBB((1+ c)eeek− ceeek−1) . (4.5)

Denote EEEk =

[
eeek

eeek−1

]
and rewrite (4.5) as EEEk =

[
(1+ c)BBB −cBBB

III 000

]
EEEk−1. Then, the asymptotic convergence

factor ACF of (4.3) is given by ρ(ΓΓΓ), the spectral radius of ΓΓΓ ,

[
(1+ c)BBB −cBBB

III 000

]
. Evidently, if there is

a c yielding ρ(ΓΓΓ)< ρ(BBB), then (4.3) provides acceleration. The following derivation produces a c which

minimizes ρ(ΓΓΓ), and this optimal c can easily be calculated analytically if all the eigenvalues of BBB are

real and its smallest and largest eigenvalues are known. We note that the cost of obtaining the required

information of the smallest and largest eigenvalues of BBB may be low for certain specific linear problems

and stationary iterative methods, as discussed in Section 4.4.

Denote by λ and

[
vvv1

vvv2

]
an eigenvalue and corresponding eigenvector of ΓΓΓ. We have

[
(1+ c)BBB −cBBB

III 000

][
vvv1

vvv2

]
=

λ

[
vvv1

vvv2

]
, yielding (

1+ c− c
λ

)
BBBvvv1 = λvvv1, (4.6)

where the trivial case, λ = 0, is omitted. Let b ∈ R denote some eigenvalue of BBB corresponding to

λ. From (4.6), we have
(
1+ c− c

λ

)
b = λ, yielding λ2− (1+ c)bλ+ cb = 0, with solutions λ1(c,b) =

1
2

[
(1+ c)b+

√
(1+ c)2b2−4cb

]
, and λ2(c,b) = 1

2

[
(1+ c)b−

√
(1+ c)2b2−4cb

]
. We use

bcr =
4c

(1+ c)2 (4.7)

to denote the “critical” value of b for which the square root term in λ1,2 vanishes for a given c.

Remark 4.1. λ1,2 are complex if and only if b and c are of the same sign and 0 < |b|< |bcr| .

Denote

r(c,b), max{|λ1(c,b)| , |λ2(c,b)|} . (4.8)

Without loss of generality, given that BBB represents the iteration matrix of a convergent method with

real eigenvalues, we assume that its eigenvalues are ordered as−1 < b1 ≤ b2 ≤ ·· · ≤ bN < 1. The optimal

c, given by c∗ = argminc maxb r(c,b), is derived next. To simplify the presentation, we assume b 6= 0

throughout, since in this case r(c,0) = 0, so a vanishing b has no influence on c∗.

Lemma 4.2.1. |c∗|< 1.
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Figure 4.1: (a): The value of rc(b) as a function of c and b ∈ (−1,1). (b): The value of rb(c) as a function
of b and c ∈ (−1,1).

Proof. We prove this lemma by showing that r(c,b), max{|λ1(c,b)|, |λ2(c,b)|}> |b| for any nonzero b

if |c| ≥ 1, so such a c slows down convergence.

For c > 1, the first term in λ1,2 already satisfies
∣∣1

2(1+ c)b
∣∣ > |b| so either λ1 or λ2 (or both) must

be larger than b. In the borderline case of c = 1, the first term equals b, but in this case the second term

cannot vanish except for b = 0, which is excluded, so again either λ1 or λ2 must be strictly larger than b.

For c≤−1 and b > 0, r(c,b) =−λ2(c,b) and the square root term is real. To show that−λ2(c,b)> b,

we need to prove
√

(1+ c)2b2−4cb > (3+ c)b. Squaring both sides of this inequality, and simplifying,

results in (2+ c)b <−c, which is satisfied, because the left side is smaller than one in this regime, while

the right side is at least one.

For c≤−1 and b < 0, if b > bcr then the square root term is imaginary by Remark 4.1, resulting by

Remark 4.2 in r(c,b) =
√

cb≥
√
−b > |b|. Otherwise, the square root is real and r(c,b) = λ1(c,b). To

show that λ1(c,b)> |b|, we need to prove that
√
(1+ c)2b2−4cb > (−c−3)b. This is indeed satisfied,

due to the fact that the right side is negative because −1 < b≤ bcr implies c <−3−2
√

2.

In light of Lemma 4.2.1, we henceforth restrict |c| to be smaller than 1. This and the fact that b is real

imply

r(c,b) =
1
2

∣∣∣∣(1+ c)b+ sgn(b)
√
(1+ c)2b2−4cb

∣∣∣∣ , (4.9)

where sgn(·) is the sign function.

Remark 4.2. When the square root term is imaginary (see Remark 4.1), we obtain r(c,b) = |λ1|= |λ2|=√
cb.

For convenience, we henceforth use rc(b) (respectively, rb(c)) to denote r(c,b) considered as a single-

variable function with a fixed c (respectively, fixed b). First we show that the maximal rc(b) depends only

on the extreme eigenvalues of b.

Lemma 4.2.2. For |c|< 1, rc(b) is maximized at either b1 or bN and has no local maximum.
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Proof. To prove that rc(b) has no local maximum for any |c|< 1, we first observe by Remarks 4.1 and 4.2

that in the range where λ1,2 are complex, rc(b) =
√

cb is strictly increasing (respectively, decreasing) for

positive (respectively, negative) b, and therefore has no local maximum in this range. Outside this range,

the derivative of rc(b) is discontinuous (only) at b = 0 and b = bcr. Elsewhere, it is given by

r′c(b) =
1
2

(
sgn(b)(1+ c)+

(1+ c)2b−2c√
(1+ c)2b2−4cb

)
. (4.10)

Note that for b = bcr, the numerator in the second term is given by 2c. It follows that sgn(r′c(b
−
cr)) =

sgn(r′c(b
+
cr)) regardless of whether c (hence also bcr) is positive or negative, so bcr cannot be a local

maximum. It remains to show that r′c(b) cannot vanish. We show this by comparing the squares of the

first and second terms in the brackets on the right side of (4.10):

(1+ c)2−

(
(1+ c)2b−2c√
(1+ c)2b2−4cb

)2

=− 4c2

(1+ c)2b2−4cb
.

This expression only vanishes for c = 0, for which (4.10) implies that r′c(b) 6= 0. Hence, r′c(b) cannot

vanish for any b ∈ (−1,1). In Figure 4.1(a), we numerically show the value of rc(b) as a function of c

and b ∈ (−1,1) that we clearly see the discontinuous at b = 0 and b = bcr.

Next, we fix b and minimize rb(c). To this end we first identify the range of c for which λ1,2 are real.

Remark 4.3. Define the critical c ∈ (−1,1), for which the square-root term in (4.9) vanishes, by

ccr(b) =
1−
√

1−b
1+
√

1−b
.

Then, by the solution of (4.6), λ1,2 are complex if and only if {c > ccr(b) and b > 0} or {c < ccr(b) and

b < 0}.

We note that ccr(b) is continuous (limb→0 ccr(b) = 0) and monotonically increasing on b ∈ (−1,1),

with ccr(b) ∈ (−3+2
√

2,1). We next show that ccr is the optimal value of c for minimizing rb(c).

Lemma 4.2.3.
ccr(b) = argmin

c
rb(c).

Proof. Consider first the case 0< b< 1. In this regime, by Remark 4.3, rb(c) =
√

cb for c> ccr(b)> 0, so

r′b(c)> 0. On the other hand, for c < ccr(b) we have rb(c) = 1
2

(
(1+ c)b+

√
(1+ c)2b2−4cb

)
, hence,

r′b(c) =
1
2

(
b+

(1+ c)b2−2b√
(1+ c)2b2−4bc

)

=
b
2

(
1−

√
1+

4(1−b)
(1+ c)2b2−4bc

)
< 0 .

It follows that rb(c) is minimized in this regime for c = ccr(b). The derivation for−1 < b < 0 is analogous

and we omit the details. In Figure 4.1(b), we numerically show the value of rb(c) as a function of c and

b ∈ (−1,1) that ccr(b) is the minimizer.
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Figure 4.2: The curves of rb(c) as a function of c with b = b1 =−0.3 and b = bN = 0.5.

Summarizing, we observe that, by Lemma 4.2.2, c∗ depends only on b1 and bN , and therefore, by

Lemma 4.2.3, there are only three possible values of c to consider as candidates for c∗: ccr(b1), ccr(bN),

and the value of c which minimizes r(c,b) subject to r(c,b1) = r(c,bN). We map out the regions where

each of these three options yields the optimal c in the following theorem.

Theorem 4.1. Let −1 < b1 ≤ bN < 1. Then, the optimal coefficient c∗ is given by

c∗ = ccr(g(b1,bN)),

where

g(b1,bN) =


bN , bN ≥−3b1,

−8bNb1(b1+bN)
(b1−bN)2 , −1

3 b1 < bN <−3b1,

b1, bN ≤−1
3 b1,

yielding the corresponding asymptotic convergence factor

r∗ =


1−
√

1−bN , bN ≥−3b1,

r(c∗,b1) = r(c∗,bN), −1
3 b1 < bN <−3b1,√

1−b1−1, bN ≤−1
3 b1.

Proof. In light of Lemmas 4.2.2 and 4.2.3, c∗ must satisfy one of the following three conditions: 1

c∗ = ccr(bN), 2 r(c∗,b1) = r(c∗,bN), or 3 c∗ = ccr(b1), denoted ctop, cmid and cbot , respectively. The

choice is determined by the maximal r obtained amongst the three. We assume for simplicity |b1| ≤ bN ,

and remark that the complementary case, |bN |<−b1, is obtained analogously so the details are omitted.

Note first that for c < ccr(bN) we have rc(bN) =
1
2

[
(1+ c)bN +

√
(1+ c)2b2

N−4cbN

]
, which is larger

than bN if c < 0, so it follows that c∗ ∈ [0,1). We first consider the case b1 ≥ 0. For c < ccr(b), we have

for any b,

r′c(b) =
1
2

[
(1+ c)+

(1+ c)2b−2c√
(1+ c)2b2−4cb

]
> 0.

On the other hand, for c > ccr(b), we have rc(b) =
√

cb so again r′c(b)> 0. The monotonicity of rc(b)
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implies rc(bN)≥ rc(b1), with equality achieved only for b1 = bN . It follows that c∗ = argminc rbN (c) and

case 1 holds, i.e., c∗ = ctop , ccr(bN). The corresponding ACF is rctop(bN) = 1−
√

1−bN =
2ctop

1+ctop
.

It remains to consider the case b1 < 0, whereby rc(b1) =−1
2

[
(1+ c)b1−

√
(1+ c)2b2

1−4cb1

]
. First,

we identify the subrange in b1 < 0 yielding rctop(bN)≥ rctop(b1), leading us again to case 1 . Denote for

clarity rtop = rctop(bN). Then case 1 holds if b1 satisfies the following inequality,

rtop ≥ −1
2

[
(1+ ctop)b1−

√
(1+ ctop)2b2

1−4ctopb1

]
,

2rtop +(1+ ctop)b1 ≥
√

(1+ ctop)2b2
1−4ctopb1 (square both sides and divide by 4),

r2
top + rtop(1+ ctop)b1 ≥ −ctopb1,

b1 ≥ − r2
top

rtop(1+ctop)+ctop
.

Using rtop =
2ctop

1+ctop
and bN =

4ctop
(1+ctop)2 , we obtain the condition b1 ≥−1

3 bN .

Finally, we discuss the remaining range of b1 < 0, i.e., b1 ∈ [−bN ,−1
3 bN), where case 1 does not

hold. The fact that c∗ ∈ [0,1) rules out case 3 , leaving case 2 , that is,

−(1+ c∗)b1 +
√
(1+ c∗)2b2

1−4c∗b1 = (1+ c∗)bN +
√
(1+ c∗)2b2

N−4c∗bN .

Simplifying by repeatedly putting the square root terms on one side and squaring both sides, we get

[2b1bN (b1 +bN)] (c∗)2 +
[
4b1bN (b1 +bN)+(b1−bN)

2
]

c∗+2b1bN (b1 +bN) = 0.

Using c∗ ∈ [0,1), the valid solution of this quadratic equation is

c∗ = cmid ,
1−
√

1−g(b1,bN)

1+
√

1−g(b1,bN)
,

where g(b1,bN) =−8b1bN(b1+bN)
(b1−bN)2 . In Figure 4.2, we numerically show the curves of rb(c) as a function of

c and b corresponding to 2 that we clearly see cmid is the solution for minc max{rb1(c),rbN (c)}.
As noted above, the derivation for (b) : |bN | ≤ −b1 is analogous and we omit the details.

Remark 4.4. Nesterov’s scheme can converge even for some BBB whose spectral radii are larger than 1. In

our setting, we can relax our assumption from −1 < b1 ≤ bN < 1 to −3 < b1 ≤ bN < 1, and Theorems 4.1

and 4.2 remain valid.

Henceforth use ctop, cmid , and cbot , as defined in the proof of Theorem 4.1, to denote the optimal

coefficient c∗ corresponding to regime Ttop (bN ≥−3b1), Tmid (bN ∈ (−1
3 b1,−3b1)) and Tbot (bN ≤−1

3 b1)

of Theorem 4.1, respectively, (see Figure 4.3(a)). Also, we numerically show the value of c∗ as a function

of b1 and bN in Figure 4.3(b). The flat parts of the curves in Figure 4.3(b) imply that c∗ only depends on

bN in this regime, and the coincidence of the curves corresponding to bN = 0.1 and bN = 0.3 for b1→−1

indicates that c∗ only depends on b1 in that regime.

This concludes our derivation for the case where the eigenvalues of BBB are all real. In the next section,

we extend our results to certain cases where some of the eigenvalues of BBB are complex.

To conclude this section, we numerically evaluate the savings in computations that are provided

by employing Nesterov’s scheme (4.3). Without loss of generality, we assume bN ≥ −b1. Then, the
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Figure 4.3: (a): Three regimes for determining c∗ and r∗. (b): The value of c∗ as a function of b1 and bN .

Acceleration Ratio (AR), defined as the ratio of the number of iterations required without acceleration to

the number of iterations required with acceleration, in order to reach the same accuracy, is asymptotically

given by

AR =
logr∗

logbN
. (4.11)

Figure 4.4 shows the relation between r∗ and bN in panel (a), and the acceleration ratio AR in panel (b), for

a range of b1 and bN values. In each curve we fix the ratio b1/bN and vary bN ∈ (0,1). For b1/bN =−1,

there is no acceleration, as discussed above, but for larger ratios we observe acceleration which improves

as b1/bN increases, and rapidly improves as bN → 1 (that is, when the unaccelerated iterations converge

slowly). Note that all values of r∗ and AR are identical for b1/bN ≥−1/3.

4.3 Complex Eigenvalues

Theorem 4.1 is formulated under the assumption that all the eigenvalues of BBB are real. We next state

sufficient conditions under which Theorem 4.1 continues to hold even though some of the eigenvalues of

BBB are complex.

Theorem 4.2. Assume that, in addition to the real eigenvalues−1< b1≤ . . .≤ bN < 1 of BBB as assumed in

Theorem 4.1, BBB also has complex eigenvalues. Denote the complex eigenvalues generically by bc = b̄ce jθ,

where j is the imaginary unit, b̄c is the modulus, and θ ∈ (−π,π] is the argument. Then, c∗ and r∗ of

Theorem 4.1 remain valid if for every one of the complex eigenvalues of BBB the modulus satisfies

b̄c ≤

1
3 bN c∗ = ctop

min(|b1|, |bN |) c∗ = cmid .

−1
3 b1 c∗ = cbot
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Figure 4.4: (a): The ACF achieved by Nesterov’s scheme as a function of bN and the ratio b1
bN

. (b): The
acceleration ratio AR (cf. (4.11)) as a function of bN and the ratio b1

bN
.

Proof. As in the proof of Theorem 4.1, we assume |b1| ≤ bN and remark that the complement, |bN |<−b1,

is proved analogously, omitting the details.

A complex eigenvalue bc does not influence the ACF, when c∗ is chosen according to Theorem 4.1,

if r(c∗,bc)≤ r∗, where r∗ = rc∗(bN), with c∗ = ctop or cmid as dictated by Theorem 4.1. This yields the

explicit condition:
1
2

∣∣∣∣(1+ c∗)bc±
√
(1+ c∗)2(bc)2−4c∗bc

∣∣∣∣≤ r∗. (4.12)

Substituting bc = b̄ce jθ into (4.12) and simplifying, we obtain

1+ c∗

2
b̄c
∣∣∣1±√1+ b̄e jθ̄

∣∣∣≤ r∗, (4.13)

where we have introduced the notation b̄ = 4c∗
(1+c∗)2b̄c ≥ 0 and θ̄ = π−θ. Since the term of the square root

is complex and the sign of its real part is always positive, (4.13) becomes

1+ c∗

2
b̄c
∣∣∣1+√1+ b̄e jθ̄

∣∣∣≤ r∗. (4.14)

Denote φ(θ̄) =
∣∣∣1+√1+ b̄e jθ̄

∣∣∣. To bound the left-hand side from above, we derive a monotonicity prop-

erty for φ(θ̄) in the period θ̄ ∈ (−π,π]. With Euler’s formula, we can rewrite φ(θ̄) as
√

1+2χcos ϑ

2 +χ2,

where χ =
(
1+2b̄cos θ̄+ b̄2

) 1
4 and ϑ ∈ (−π

2 ,
π

2 ) := arctan b̄sin θ̄

1+b̄cos θ̄
, and then it is evident that φ(−θ̄) =

φ(θ̄). Since φ(θ̄) is an even function, we consider its monotonicity in the half period θ̄ ∈ (0,π). Using
√

x+ jy =
√

x+
√

x2+y2

2 + sgn(y) j
√
−x+
√

x2+y2

2 and φ(θ̄) =
∣∣∣1+√1+ b̄cos θ̄+ jb̄sin θ̄

∣∣∣, we get φ(θ̄) =∣∣∣∣1+√1+b̄cos θ̄+χ2

2 + j
√
−(1+b̄cos θ̄)+χ2

2

∣∣∣∣. For convenience, we consider the monotonicity of φ2(θ̄) =
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1+
√

2+2b̄cos θ̄+2χ2 +χ2 instead of φ(θ̄). Since

∂φ2(θ̄)

∂θ̄
= 2χ

∂χ

∂θ̄
+

−b̄sin θ̄+2χ
∂χ

∂θ̄√
2(1+ b̄cos θ̄)+2χ2

< 0, θ̄ ∈ (0,π)

(using ∂χ

∂θ̄
< 0, b̄sin θ̄≥ 0, and χ≥ 0), we find that φ(θ̄) is monotonically decreasing in θ̄∈ (0,π). Together

with the fact that φ(θ) is an even function, we have r(c∗, b̄c)≤ r(c∗,bc)≤ r(c∗,−b̄c).

From Theorem 4.1, we know that r∗ = rctop(bN)≥ rctop(bi) for any real bi ≥−1
3 bN when Ttop is the

relevant domain. Thus, for any complex eigenvalue with b̄c ≤ 1
3 bN , we obtain r(ctop,bc) ≤ r∗. Since

φ(θ) is monotonically increasing (respectively, decreasing) in θ ∈ (0,π) (respectively, θ ∈ (−π,0)), the

upper bound on r(ctop,bc) becomes tight when the argument is close to π (respectively, −π). This means

that if the modulus is larger than 1
3 bN then the argument should be close to 0 to enforce r(ctop,bc)≤ r∗.

Evidently, the conclusion drawn here is valid also for c∗ = cmid , as it is implied by the monotonicity

properties of φ(θ).

As noted above, the proof for the complementary domain |bN |<−b1 is analogous and so the details

are omitted.

The sufficient robustness conditions of Theorem 4.2 are tight for |θ| → π when bN > |b1|, and can be

relaxed increasingly as |θ| decreases towards 0. Similarly (and in a symmetrical manner), the conditions

are tight for θ→ 0 when bN < |b1|, and can be relaxed increasingly as |θ| increases towards π. This

follows from the proof, and it is demonstrated by numerical examples in Figure 4.5. The blue region

marks the domain where rc∗(bc)≤ r∗, that is, the results of Theorem 4.1 hold so long as all the complex

eigenvalues of BBB lie within this region. The disk enclosed by the red circle is the subdomain covered by

Theorem 4.2.

Comparison of Nesterov’s Scheme to RI Chebyshev Acceleration

A classical approach to accelerating convergence of stationary iteration schemes is by polynomial

acceleration, whereby successive iterates are combined linearly with skillfully selected coefficients

[71]:

x̄xxk =
k

∑
n=0

αk,nxxxn, (4.15)

where xxxn = BBBxxxn−1 +Constant and ∑
k
n=0 αk,n = 1. Denoting ēeek = x̄xxk− xxx∗, we obtain

ēeek =

(
k

∑
n=0

αk,nBBBn

)
eee0 ,

where eee0 = xxx0− xxx∗. The objective of minimizing the spectral radius ρ
(
∑

k
n=0 αk,nBBBn) (which yields

the asymptotic convergence factor ACF), is achieved by using the well-known Chebyshev polynomial.

Applied in recursive form, this yields a scheme of the following form:

xxx1 = γ(BBBxxx0 +Constant)+(1− γ)xxx0,

xxxk+1 = βk+1 {γ(BBBxxxk +Constant)+(1− γ)xxxk}+(1−βk+1)xxxk−1.
(4.16)
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(a) b1 =−0.3 and bN = 0.9. (b) b1 =−0.5 and bN = 0.9.

(c) b1 =−0.9 and bN = 0.3. (d) b1 =−0.9 and bN = 0.5.

Figure 4.5: The complex domains defined in Theorem 4.2. The red circle has radius |b1| in panels (a) and
(b) and |bN | in (c) and (d).
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The optimal values of γ and βk+1 depend on the eigenvalues of BBB, see details in [71]. Often, such

information is not readily available. This motivates us to consider a “Restricted Information” scenario,

where we assume that we are given only the smallest and largest real eigenvalues of BBB, b1 and bN , as in

the previous section. We refer to the scheme (4.16) that is based solely on this information as Restricted

Information (RI) Chebyshev acceleration. Clearly, RI Chebyshev acceleration is optimal in the case where

all the eigenvalues of BBB are real, because in that case we have all the required information. Indeed, in this

case (4.16) converges as fast as Preconditioned Conjugate Gradients (PCG) with preconditioner BBB, but

requires less computation than PCG once b1 and bN are known [71]. In this case, Chebyshev acceleration

is more efficient than Nesterov’s scheme. However, it is interesting to note that we only need to know bN

for applying Nesterov’s scheme if b1 ≥−1
3 bN (or, by a symmetric argument, we only need to know b1 if

bN ≤−1
3 b1), so in these regimes less information is required—just the spectral radius of BBB which is often

easy to compute approximately.

Next, we study and compare the performance of Nesterov’s scheme and RI Chebyshev acceleration in

cases where BBB has complex eigenvalues2. As noted above, if BBB has no complex eigenvalues then (4.16) is

always faster than Nesterov’s scheme [63], as we also demonstrate later in our numerical tests. However,

first we show in Figure 4.6 that Nesterov’s scheme can be faster than RI Chebyshev acceleration in a

significant regime when BBB does have complex eigenvalues. This figure compares Nesterov’s scheme

and RI Chebyshev for two cases of given b1 and bN values. We use r∗, the ACF of Theorem 4.1, as a

benchmark, and show the numerically computed range of eigenvalues in the complex plane for which

RI Chebyshev (cyan) and Nesterov’s scheme (blue) yield convergence factors which do not exceed r∗.

Evidently, Nesterov’s scheme remains robust for a significantly broader range of complex eigenvalues, and

it converges faster than the RI Chebyshev acceleration scheme if there is at least one complex eigenvalue

in the blue sub-domain. We demonstrate numerical examples of accelerated multigrid solvers where this

behavior is relevant and yields an advantage to Nesterov’s scheme.

Finally, we select several complex eigenvalues with a given b̄c and argument varying from 0 to π, to

show how the argument affects rc∗(bc). The results are shown in Figure 4.7. In general, we see that RI

Chebyshev acceleration is adversely affected more strongly by change of θ than Nesterov’s scheme, again

demonstrating that the latter is more robust with respect to the existence of complex eigenvalues.

4.4 Numerical Tests

Nesterov’s scheme is evidently easy to implement in practice for any stationary iteration method, since it

only requires one additional step to combine the current iterate with the previous one. Furthermore, the

additional computation is negligible and so acceleration is obtained almost for free. The only significant

cost is the memory, since we need to store one previous iterate. In particular, compared with common

acceleration techniques such as Krylov subspace methods [59], the cost of (4.3) is smaller. The drawback

of course is the requirement to know b1 and bN , since they are needed for computing the optimal parameter

c∗. In practice, as noted earlier, we may only need to know the spectral radius of BBB. For example, if

b1 ≥ 0 (e.g., if we iterate with BBB twice before successive Nesterov steps), then we only need to evaluate

bN , which can be done approximately by the power method [72], or by running the unaccelerated iteration

2Optimal Chebyshev acceleration for BBB with complex eigenvalues requires knowing an ellipse in the complex plane which
contains all the eigenvalues, which may be hard to approximate in practice.
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(a) b1 =−0.3 and bN = 0.9. (b) b1 =−0.5 and bN = 0.9.

Figure 4.6: Cyan: complex eigenvalues of BBB for which RI Chebyshev acceleration yields a convergence
factor smaller than or equal to r∗ of Theorem 4.1; Blue: complex eigenvalues of BBB for which Nesterov’s
scheme yields a convergence factor smaller than or equal to r∗ of Theorem 4.1. The red circle is of radius
|b1|.
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Figure 4.7: ACF of particular complex eigenvalues bc with fixed b̄c and varying θ ∈ [0,π] for Nesterov’s
scheme and RI Chebyshev acceleration. The black line represents r∗ of Nesterov’s scheme.

for several steps. Since in many applications we need to solve (4.1) many times with different fff , we argue

that the amount of computation required to approximate b1 and bN is often acceptable [59].

In this section we focus on accelerating multigrid V-cycle iterations [9, 10, 73] for elliptic boundary

value problems. In some applications, the so-called smoothing factor, which is obtained by Fourier

smoothing analysis, may provide a cheap yet sufficiently accurate approximation to b1 and bN [74, 75, 76,

77, 78].

We compare acceleration schemes for a multigrid solver for the two-dimensional diffusion equation

on the unit square,

−∇(σ(x,y)∇u(x,y)) = f (x,y), (4.17)
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discretized on a 1024×1024 uniform grid, yielding a linear system

AAAuuu = fff , (4.18)

with AAA = −∇h(σσσ∇huuu) a second-order finite-difference or bilinear finite element discretization of the

diffusion equation with Dirichlet boundary conditions. In the first set of tests, the elements of the diffusion

coefficient vector are all equal to 1, yielding a discretized Poisson equation, while in the second and third

sets the elements are sampled from a log-normal distribution and from a uniform distribution in (0,1),

respectively, following [79]. All the tests in this chapter are implemented on a laptop with 2.3GHz Intel

Core i9.

For the Poisson problem we employ the standard five-point finite difference discretization, damped

Jacobi or Red-Black Gauss-Seidel relaxation, full-weighted residual transfers and bilinear interpolation,

and the coarse-grid operators are defined by rediscretization on all coarse grids with the five-point

discretization stencil [74]. We run standard V(ν1,ν2) cycles with ν1 = 1 pre-relaxation sweep and ν2 = 0

or 1 post-relaxation sweeps. We compare acceleration by Nesterov’s scheme to Preconditioned Conjugate

Gradients (PCG) with V(ν1,ν2) as the preconditioner, denoted PCG-V(ν1,ν2) and to RI Chebyshev

acceleration of the V(ν1,ν2) cycles, denoted Chebyshev-V(ν1,ν2).

Let rrrk = fff −AAAuuuk denote the residual vector at the end of the kth iteration. Then the convergence

factor CF at the kth iteration is given by the ratio of the successive residual norms, ||rrrk||2/||rrrk−1||2. We

estimate the ACF by running sufficiently many iterations such that the CF no longer changes significantly.

In our first test we employ V(1,0) cycles for the Poisson problem, using Jacobi relaxation with the

theoretical optimal damping factor 0.8 (obtained by Fourier smoothing analysis), yielding a smoothing

factor (and correspondingly, an ACF) of 0.6. For this choice, Nesterov’s scheme cannot provide accelera-

tion, because bN =−b1 = 0.6. However, it is possible to improve the convergence factor by choosing a

damping factor that is not optimal for stand-alone multigrid. We do this by increasing both bN and b1,

and of course applying Nesterov acceleration. To demonstrate the potential gain, we show in Figure 4.8

the ACF of V(1,0) and Nesterov-accelerated V(1,0) cycles, for varying damping factors of the Jacobi

relaxation. We find that the optimal choice is to reduce the damping factor to 8
13 , yielding b1 =−1

3 bN .

Evidently, these theoretical results are matched well by the numerical results achieved in practice. The

effect is also seen in the first row of Figure 4.9. We find that optimizing the Jacobi damping factor for

Nesterov acceleration yields a non-negligible reduction in the ACF (from 0.6 to 0.45) and in the run-time.

Moreover, although PCG-V(1,0) is faster than Nesterov-V(1,0) in terms of iteration count, as expected,

Nesterov acceleration yields a shorter run-time. As expected, the winner is Chebyshev-V(1,0), which is

as fast as PCG-V(1,0) in terms of iteration count, but faster than all its competitors in terms of CPU time.

Rather similar conclusions are obtained for V(1,1) cycles, as seen in the second row of Figure 4.9.

We next test accelerated multigrid cycles with Red-Black (RB) relaxation, which costs about the same

as Jacobi and provides better smoothing, hence faster convergence. In this case, some of the eigenvalues

of BBB are complex, and yet we select c∗ based only on b1 and bN using Theorem 4.2. Again, we test both

V(1,0) and V(1,1) cycles with acceleration. The results are shown in Figure 4.10. Note that we use

GMRES without restart [59], which is faster than restarted GMRES, instead of PCG in this experiment,

because V(1,0) and V(1,1) are not symmetric. The alternative of using symmetric Gauss-Seidel for

the relaxation instead of RB retains the symmetry, allowing the use of PCG. However, in our numerical

tests with ν1 = ν2 = 1 we found that using symmetric GS yields an ACF that is similar to that of RB but
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Figure 4.8: The ACF achieved by V(1,0) cycles, with and without Nesterov acceleration, as a function
of the Jacobi relaxation damping factor. The extreme eigenvalues used for determining c∗, b1 and bN ,
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is smaller than 10−8. The ACF is then estimated by the geometric mean of the last 5 iterations.
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Figure 4.9: Comparison of acceleration methods for the Poisson problem. Optimally damped Jacobi
relaxation is used in all the tests except for Nesterov-V(1,0), which uses a damping coefficient of 8

13 .
First row: Accelerated V(1,0) cycles. Second row: Accelerated V(1,1) cycles.

requires twice the number of operations per cycle. Moreover, RB has an advantage in parallel computation.

instead of PCG in this experiment, because V(1,0) and V(1,1) are not symmetric. In Figure 4.10, we

see that Nesterov’s scheme is faster than RI-Chebyshev acceleration, both in terms of iterations and CPU

time. Moreover, we observe that GMRES with V(1,0) or V(1,1) as the preconditioner is fastest in terms
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of iterations. However, Nesterov’s scheme is fastest in terms of CPU time. Furthermore, we note that

GMRES needs much more memory than Nesterov’s scheme, and its implementation is not as trivial.
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Figure 4.10: Comparison of acceleration methods for the Poisson problem with Red-Black relaxation.
First row: Accelerated V(1,0) cycles. Second row: Accelerated V(1,1) cycles.

Finally, we test (4.17), (4.18) with a random diffusion coefficient vector σσσ, sampled from a log-normal

or uniform distribution, following [79]. Due to the discontinuous coefficients, we use the classical Black

Box Multigrid algorithm [80], employing operator-dependent prolongation and Galerkin coarsening. For

relaxation we employ Gauss-Seidel in natural (lexicographic) ordering. Following [79], we use bilinear

finite element discretization. Here, we cannot use Fourier smoothing analysis, and bN is estimated by

running V cycles with no acceleration, and we assume b1 = 0. The results are shown in Figure 4.11. We

find that Nesterov’s scheme is competitive in terms of iteration count, and it is the fastest method in terms

of CPU time in these experiments.

4.5 Conclusion

In this chapter, we adapt Nesterov’s scheme to accelerate stationary iterative methods for linear problems.

Under the assumption that the eigenvalues of the iteration matrix are real, we derive a closed-form solution

for the optimal scalar coefficient c used in Nesterov’s scheme. Numerical tests with accelerated multigrid

cycles demonstrate the advantages of this approach. Moreover, we also study the robustness of Nesterov’s

scheme for cases where some of the eigenvalue of the iteration matrix BBB are complex, identifying an

explicit disk in the complex plane where the existence of complex eigenvalues does not degrade the rate

of convergence. Our numerical results also demonstrate an advantage of Nesterov’s acceleration scheme

in such cases. In future work we plan to study more general cases of complex eigenvalues not covered in

this chapter, and to extend our approach to nonlinear problems.

We note that the lower bound on the asymptotic convergence factor ACF shown in [70] is tight if the
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Figure 4.11: Comparison of accelerated Black Box Multigrid V(1,1) cycles for the diffusion problem
with log-normal (first row) and uniform (second row) distributions of the diffusion coefficient vector σσσ.

regime of the complex eigenvalues meets the disk defined in Theorem 4.2. Following the idea in [70], the

authors in [81] quantified the improvement of the ACF of Anderson acceleration applied to Alternating

Direction Method of Multipliers for nonlinear problems. From [81], we see that the Jacobians of ADMM

at the fixed point always have complex eigenvalues and find that our results are still relevant to some

nonlinear examples considered in [81]. We also note that PCG and restricted-information Chebyshev

are optimal when BBB only has real eigenvalues and are faster than Nesterov’s scheme. However, one

may benefit from the multi-step acceleration described in [70] to reduce such a gap. In future work we

plan to study more general cases of complex eigenvalues not covered in this paper, to explore multi-step

acceleration with optimal acceleration coefficients, and to try to extend our approach to other methods for

nonlinear problems with analytic coefficients ck.
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Chapter 5

Merging Multigrid Optimization with
SESOP

In this chapter, we report our work on merging multigrid optimization with sequential subspace optimiza-

tion. This chapter is based on the following arXiv paper:

• Tao Hong, Irad Yavneh, and Michael Zibulevsky, Merging Multigrid Optimization with SESOP,

arXiv:1812.06896.

5.1 Introduction

Multigrid (MG) methods are widely considered to be an efficient approach for solving elliptic partial

differential equations (PDEs) and systems, as well as other problems which can be effectively represented

on a hierarchy of grids or levels [9, 10, 11, 12]. However, it is often challenging to design efficient

stand-alone MG methods for difficult problems, and therefore MG methods are often used in combination

with acceleration techniques (e.g., [13]).

In this chapter we study MG in an optimization framework and seek robust solution methods by

merging this approach with so-called SEquential Subspace OPtimization (SESOP) [15]. SESOP is a

general framework for iteratively solving large-scale optimization problems, as described in the next

section. The combined framework is called SESOP-MG, and its two-grid (TG) version is called SESOP-

TG. We then analyze the asymptotic convergence factor (ACF) of a fixed-stepsize version of SESOP-TG

for quadratic optimization problems, and estimate the expected acceleration due to SESOP by means of

the so-called h-ellipticity measure [82, 74]. Resorting to local Fourier analysis (LFA) [82, 75], we propose

two methods to estimate optimal fixed stepsizes of SESOP-TG for quadratic optimization problems

cheaply in cases where LFA is applicable. Numerical tests demonstrate the relevance of the theoretical

analysis in practice.

The chapter is organized as follows. The standard TG and SESOP algorithms are briefly described in

the remainder of this section. The merged SESOP-TG/MG algorithm is proposed and tested in Section 5.2.

An analysis of the ACF for a fixed-stepsize version of the SESOP-TG method for quadratic problems

is presented in Section 5.3. There, we also show how to estimate the optimal fixed stepsizes cheaply

for some specific problems. Numerical tests validate our analysis and the effectiveness of the proposed

method for estimating the optimal fixed stepsizes. Conclusions are drawn in Section 5.4.
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We adopt the following notation. xxx denotes the unknown solution vector, and F(xxx) a convex function

we aim to minimize. In the two-grid case, we use superscripts h and H to denote the fine and coarse grid,

e.g., Fh(xxxh) and FH(xxxH) denote the fine and coarse functions, respectively. In general, we use boldface

font to denote vectors and matrices, and T denotes the transpose operator.

5.1.1 Multigrid (MG)

We consider MG as a method for convex optimization. For an extensive review of MG for PDE opti-

mization, see Borzı̀ and Schulz [83] and references therein. Several authors developed MG optimization

for specific problems in the 1990’s, and at the end of the decade Nash [84] formulated MG as a general

optimization framework called MG/OPT based directly on the well-known full approximation storage

(FAS) scheme of Brandt [9]. Following this, Lewis and Nash applied this framework to systems governed

by differential equations [85]. In similar vein, Wen and Goldfard proposed a line search MG method to

solve unconstrained convex and nonconvex problems [86]. Toint et al. merged MG optimization with the

trust region approach, applying MG to the series of linear subproblems arising in each step of trust region

methods. This was applied to nonlinear convex or nonconvex problems, including bound constraints

[87, 88, 89, 90]. Recently, Calandra et al. applied MG optimization to reduce the cost of step computation

in high-order optimization [91].

Consider the following unconstrained problem defined on the fine-grid:

xxxh
∗ = argmin

xxxh∈RN
Fh(xxxh) , (5.1)

where Fh(xxxh) : RN → R is a convex and differentiable function and the solution set of (5.1) is not empty.

We describe a single iteration of the two-grid algorithm next, with MG obtained by straightforward

recursion. Denote by xxxh
k the approximation to the fine-grid solution xxxh

∗ after the kth iteration. Assume that

we have defined two full-rank operators, a restriction IIIH
h : RN → RNc , and a prolongation IIIh

H : RNc → RN ,

where Nc is the size of the coarse-grid. Furthermore, let xxxH
k denote a coarse-grid approximation to xxxh

k (for

example, we may use xxxH
k = IIIH

h xxxh
k , but other choices may be used as well). The coarse-grid problem is then

defined as follows:

xxxH
∗ = argmin

xxxH∈RNc

FH(xxxH)− vvvT
k xxxH , (5.2)

where FH is a coarse approximation to Fh, and vvvk = ∇FH(xxxH
k )− IIIH

h ∇Fh(xxxh
k). The correction term vvvk,

adapted from FAS, is used to enforce the same first-order optimality condition [84] on the fine and coarse

levels. After solving (5.2) (exactly in TG, and approximately and recursively in MG), the coarse-grid

correction CGC direction is defined by

dddh
k = IIIh

H(xxx
H
∗ − xxxH

k ). (5.3)

Finally, the CGC is added to the current fine-grid approximation:

xxxh
k ← xxxh

k +dddh
k . (5.4)

This may be followed by additional relaxation steps, yielding the k+1st approximation xxxh
k+1. The two-grid

algorithm is written in Algorithm 5.1.
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Algorithm 5.1 Two-Grid (TG)
Input: Initial value xxxh

0, convergence criterion ε, the number of maximal iterations Max Iter, ν1,ν2 – the
number of pre- and post-relaxation steps, k = 1.

Output: Solution xxxh
∗.

1: while k ≤Max Iter do
2: xxxh

k ← Relaxation(xxxh
k−1,ν1).

3: Evaluate the gradient ∇Fh(xxxh
k) and formulate vvvk.

4: if |∇Fh(xxxh
k)| ≤ ε then

5: xxxh
∗← xxxh

k .
6: Return
7: end if
8: Solve the coarse problem (5.2) to get xxxH

∗ and then dddh
k ← IIIh

H
(
xxxH
∗ − IIIH

h xxxh
k

)
.

9: Update xxxh
k ← xxxh

k +dddh
k .

10: xxxh
k ← Relaxation(xxxh

k ,ν2).
11: k← k+1
12: end while
13: xxxh

∗← xxxh
k .

14: Return

5.1.2 SEquential Subspace OPtimization (SESOP)

SESOP [92, 93, 94, 15] is a framework for solving smooth large-scale unconstrained minimization

problems such as (5.1), by sequential optimization over affine subspaces MMMk, spanned by the current

descent direction (typically preconditioned gradient) and m previous propagation directions of the method.

If Fh(xxxh) is convex, SESOP yields the optimal worst-case convergence factor of O( 1
k2 ) [92], while

achieving efficiency of the quadratic Conjugate Gradients (CG) method when the problem is close to

quadratic or in the vicinity of the solution.

The affine subspace at the kth iteration is defined by

MMMh
k =

{
xxxh

k +PPPh
kααα : ααα ∈ Rm+1

}
,

where xxxh
k is the kth iterate, the matrix PPPh

k contains the spanning directions in its columns, the preconditioned

gradient PPP∇Fh(xxxh
k) and m last steps δδδ

h
i = xxxh

i − xxxh
i−1,

PPPh
k =

[
PPP∇Fh(xxxh

k),δδδ
h
k ,δδδ

h
k−1, · · · ,δδδ

h
k−m+1

]
, m≥ 0. (5.5)

The new iterate xxxh
k+1 is obtained via optimization of Fh(·) over the current subspace MMMh

k ,

ααα∗k = argminααα∈Rm+1 Fh(xxxh
k +PPPh

kααα),

xxxh
k+1 = xxxh

k +PPPh
kααα∗k .

(5.6)

By keeping the dimension of ααα low, (5.6) can be solved efficiently with a Newton-type method. SESOP is

relatively efficient if (i) the objective function can be represented as Fh(AAAxxxh); (ii) the evaluation of Fh(·)
is cheap, but calculating AAAxxxh is expensive. In this case, we can avoid re-computation of AAAxxxh

k during the

subspace minimization by storing AAAPPPh
k and AAAxxxh

k . A typical class of problems of this type is the well-known

`1− `2 optimization [94].

SESOP can yield faster convergence if more efficient descent directions are added to the subspace
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MMMh
k . This may include a cumulative or parallel coordinate descent step, a separable surrogate function

or expectation-maximization step, Newton-type steps and other methods [93, 94, 15]. In this work we

suggest adding the CGC direction provided by the MG framework.

5.2 Merging Multigrid with SESOP

5.2.1 SESOP-TG

We begin this section by introducing a two-grid version of our scheme, SESOP-TG, and later extend it to

the multilevel version, SESOP-MG. In its basic form, the idea is to add the CGC dddh
k of (5.3) into the affine

subspace MMMk by replacing PPPh
k with an augmented subspace P̄PPh

k =
[
dddh

k PPPh
k

]
and computing the locally

optimal ααα to obtain the next iterate, xxxh
k+1. Our intention is to combine the efficiency of MG that results

from fast reduction of smooth error by the CGC, with the robustness of SESOP that results from the local

optimization over the subspace. That is, even in difficult cases where the CGC is inadequate, the algorithm

should still converge at least as fast as the standard SESOP, because an inefficient direction simply results

in small (or conceivably even negative) coefficient. SESOP-TG is presented in Algorithm 5.2. Note that

we add the option of two additional steps to the usual SESOP algorithm, the pre- and post-relaxation at

Lines 2 and 13 in Algorithm 5.2, commonly applied in MG algorithms. This allows us to advance the

solution with low computational expense whenever the coarse-grid direction is inefficient (due the the fact

that previous use of the CGC direction greatly reduced the smooth error). For the relaxation we typically

use nonlinear Jacobi or Gauss-Seidel applied to the gradient equation. The flowchart of Algorithm 5.2 is

presented in Figure 5.1.

Algorithm 5.2 SESOP-TG-m
Input: Initial value x̄xxh

0 = xxxh
0, convergence criterion ε, the number of maximal iterations Max Iter, the

preconditioner PPP and ν1,ν2 – the number of pre- and post-relaxation steps, k = 1.
Output: xxxh

∗.
1: while k ≤Max Iter do
2: ¯̄xxxh

k ← Relaxation(x̄xxh
k−1,ν1).

3: Evaluate the gradient ∇Fh( ¯̄xxxh
k).

4: if |∇Fh( ¯̄xxxh
k)| ≤ ε then

5: xxxh
∗← ¯̄xxxh

k .
6: Return
7: else
8: PPPh

k ←
[
PPP∇Fh( ¯̄xxxh

k) ¯̄xxxh
k− xxxh

k−2 · · · ¯̄xxxh
k−m+1− xxxh

k−m−1

]
.

9: end if
10: Solve (5.2) with initial xxxH

k to get xxxH
∗ and then dddh

k ← IIIh
H
(
xxxH
∗ − xxxH

k

)
.

11: Formulate the augmented P̄PPh
k ←

[
dddh

k PPPh
k

]
.

12: Solve approximately (5.6) on P̄PPh
k and update xxxh

k ← ¯̄xxxh
k + P̄PPh

kααα∗k .
13: x̄xxh

k ← Relaxation(xxxh
k ,ν2).

14: end while
15: xxxh

∗← x̄xxh
k .

16: Return

Remark 5.1. Evidently, if we select P̄PPh
k to contain only dddh

k , with ααα∗k = 1, then SESOP-TG-m reduces to TG.

Note that in Algorithm 5.1, we need to valuate ∇Fh(xxxh
k) to formulate vvvk but we do not use it further. Here,
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Figure 5.1: Flowchart of the iterates of Algorithm 5.2.

however, we put ∇Fh(xxxh
k) together with the CGC direction in the augmented subspace P̄PPh

k for further use.

The main drawback of Algorithm 5.2 is of course the need to solve the subspace minimization problem

for ααα∗k at each iteration. However, in certain cases of problems with special structure or large size, the cost

of the subspace minimization may become negligible; see numerical tests in Section 5.2.2.

Remark 5.2. Similarly to standard multigrid methods, the multilevel algorithm called SESOP-MG-m is

derived by recursively treating (5.2) at step 10 of Algorithm 5.2. Compared with the subspace P̄PPk
h in (5.2),

the subspaces in the coarse problems only contain two directions: the preconditioned gradient and the

coarse grid correction from the coarser level.

5.2.2 Numerical Tests

We demonstrate the SESOP-MG-m algorithm performance for two nonlinear problems and compare it

with steepest descent (SD), Nesterov acceleration [50], and limited-memory BFGS (LBFGS) [51]. The

MG method proposed in [86]—denoted “MG-Line”—is adapted for this comparison, to illustrate the

effectiveness of using history. We use SD as the relaxation for “MG-Line”. For SESOP-MG-m, we

employ Newton’s method for the subspace minimization at each iteration. All the tests are performed on a

laptop with 2.3GHz Intel Core i9.

Example I

Consider the following variational problem on a uniform grid [86],
minu(x,y) F (u(x,y))≡

∫
Ω

1
2 |∇u(x,y)|2 + γ

(
u(x,y)eu(x,y)− eu(x,y)

)
,

− f (x,y)u(x,y)dxdy

such that u(x,y) = 0 on ∂Ω,

(5.7)

where ∇ is the gradient, γ = 10, Ω = [0,1]× [0,1], and

f (x,y) =
((

9π
2 + γe(x

2−x3)sin(3πy)
)(

x2− x3)+6x−2
)

sin(3πy) .

Through the Euler-Lagrange equation, the PDE formulation of (5.7) reads{
−∆u(x,y)+ γu(x,y)eu(x,y) = f (x,y) on Ω,

u(x,y) = 0 on ∂Ω,
(5.8)
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where ∆ denotes the Laplacian.

Equation (5.7) is discretized by finite differences, using first order forward differences for ∇ in (5.7),

resulting in a five-point stencil for ∆ in (5.8). The finest grid size is 1024×1024, and we employ 7 levels,

coming down to grids of size 8×8. The coarse problems are defined by rediscretization, and full-weighted

residual transfers and bilinear interpolation are used as the restriction and prolongation. The relaxation

sweep parameters are ν1 = 1 and ν2 = 0 for MG-Line. BFGS with up to ten iterations is used for solving

the problem on the coarsest level. The minFunc toolbox [95] is used for BFGS and Newton’s method.

The maximal number of iterations of SESOP-MG-1 and MG-Line are set to be 30 and 100, respectively.

The other methods are allowed to use 500 iterations. For clarity of display, we denote by F∗+10−8 the

minimal objective value over all methods after running the maximal allowed number of iterations.

From Figure 5.2, we clearly observe that SESOP-MG-1 is the fastest algorithm in terms of both

iteration count and CPU time. Moreover, we note that SD, Nesterov, and LBFGS converge fast initially, but

then slow down. This well-known phenomenon is a result of the fact that these methods cannot efficiently

eliminate low-frequency error, unlike MG methods which use CGC. Note also that SESOP-MG-1 is

significantly faster than MG-Line, demonstrating the effectiveness of introducing history for acceleration.
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Figure 5.2: Comparison of different methods for (5.7) on 1024×1024 grids.

Example II

Our second example is the p-Laplacian,{
minu(x,y) F (u(x,y))≡

∫
Ω
|∇u(x,y)+ξ|p− f (x,y)u(x,y)dxdy,

such that u(x,y) = 0 on ∂Ω,
(5.9)

where p ∈ (1,2). The corresponding PDE of (5.9) is:{
−∇ ·

(
|∇u+ξ|p−2

∇u
)
= f on Ω

u(x,y) = 0 on ∂Ω.
(5.10)

The parameter ξ = 10−6 is introduced to maintain differentiability (hence a positive denominator). The

function f (x,y) is defined by substituting u(x,y) = (x2− x3)sin(3πy) into (5.10). Note that solving (5.9)
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becomes especially challenging when p is close to 1. We choose p = 1.3 and 1.6 to study the performance

of our approach. The experimental setting is the same as that of Example I, except the maximal number of

iterations allowed. As seen in Figure Figure 5.3, SESOP-MG-1 is the fastest of the five methods, followed

by MG-Line, as in Example I.

0 200 400 600 800 1000 1200
10-8

10-6

10-4

10-2

100

102

104

106

SD
Nesterov
LBFGS
MG-Line
SESOP-MG-1

(a) p = 1.3.

0 200 400 600 800 1000 1200 1400
10-8

10-6

10-4

10-2

100

102

104

106

SD
Nesterov
LBFGS
MG-Line
SESOP-MG-1

(b) p = 1.3.

0 50 100 150 200 250 300 350
10-8

10-6

10-4

10-2

100

102

104

106

SD
Nesterov
LBFGS
MG-Line
SESOP-MG-1

(c) p = 1.6.

0 50 100 150 200 250 300 350
10-8

10-6

10-4

10-2

100

102

104

106

SD
Nesterov
LBFGS
MG-Line
SESOP-MG-1

(d) p = 1.6.

Figure 5.3: Comparison of different methods for (5.9) on 1024×1024 grids.

Dependence of SESOP-MG-m on m

Next we show how the choice of the search-space size m affects the performance of SESOP-MG-m. To

this end, we apply SESOP-MG-m with different m to (5.9) with p = 1.3. In Figure 5.4(a), we see that

using a larger m yields faster convergence rates. However, a larger m also increases the complexity of

the subspace minimization results in higher CPU times per iteration. From Figure 5.4(b), we find that

m = 3 is a good compromise for achieving low CPU times for this test. We also see that m = 5 results in

higher times than m = 3,4 because, in practice, the larger size of the subspace introduces some numerical

difficulties.

The numerical tests demonstrate the potential advantage of SESOP-TG/MG-m for such types of

optimization problems. However, SESOP-TG/MG-m comes with the cost of solving a subspace minimiza-

tion problem at each iteration. From Figure 5.4, we observe that the performance of SESOP-TG/MG-m

deteriorates for large m. In the case of quadratic optimization problems, we may be able to avoid the
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Figure 5.4: Comparison of different m for (5.9) on 1024×1024 grids.

subspace minimization, by using fixed nearly-optimal stepsizes for SESOP-TG-1. Indeed, we derive

such fixed stepsizes, and show that they yield ACF’s that are comparable to those obtained by subspace

minimization. In such cases, we get the acceleration nearly for free, provided that we can estimate the

fixed parameters efficiently. To this end, we propose two heuristic methods, based on local Fourier analysis

(LFA) and smoothing analysis, to estimate the optimal fixed stepsizes cheaply.

5.3 Convergence Factor Analysis of SESOP-TG-1 for Quadratic Prob-
lems

To gain insight, we analyze SESOP-TG-1 for quadratic optimization problems, which are equivalent to

the solution of linear systems. We first derive a fairly general formulation for SESOP-TG-1. Then we

explore, under certain simplifying assumptions, a fixed-stepsize variant of SESOP-TG-1. In this analysis

we assume for simplicity no pre- or post-relaxation steps.

Consider the linear system

AAAxxx = fff , (5.11)

where AAA ∈ RN×N is a symmetric positive-definite (SPD) matrix, and we omit h superscripts for notational

simplicity. Evidently, solving (5.11) is equivalent to the following quadratic minimization problem:

xxx∗ = argmin
xxx∈RN

Fh(xxx),
1
2

xxxT AAAxxx− fff T xxx. (5.12)

Given iterates xxxk−1 and xxxk−2, the next iterate produced by SESOP-TG-1 is given by

xxxk = xxxk−1 + c1(xxxk−1− xxxk−2)+ c2PPP( fff −AAAxxxk−1)+ c3IIIh
HAAA−1

H IIIH
h ( fff −AAAxxxk−1), (5.13)

where c1,c2,c3 are the optimal weights associated with the three directions comprising P̄PPh
k : c1 multiplies

the so-called history, that is, the difference between the last two iterates; c2 multiplies the preconditioned

gradient; c3 multiplies the CGC direction dddh
k−1. Here, AAAH represents the coarse-grid matrix approximating

AAA, which is most commonly defined by the Galerkin formula, AAAH = IIIH
h AAAIIIh

H , or simply by rediscretization
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on the coarse-grid in the case where AAA is the discretization of an elliptic PDE on the fine-grid. Subtracting

xxx∗ from both sides of (5.13), and denoting the error by eeek = xxx∗− xxxk, we get

eeek = eeek−1 + c1(eeek−1− eeek−2)− c2PPPAAAeeek−1− c3IIIh
HAAA−1

H IIIH
h AAAeeek−1. (5.14)

Rearranging (5.14) yields

eeek = BBBeeek−1− c1eeek−2, (5.15)

where

BBB = (1+ c1)III− (c2PPP+ c3Ih
HAAA−1

H IH
h )AAA, (5.16)

and III denotes the identity matrix. Define the vector EEEk =

[
eeek

eeek−1

]
. Then, (5.15) implies the following

relation:

EEEk = ϒϒϒEEEk−1, ϒϒϒ ,

[
BBB −c1III

III 000

]
, (5.17)

and the asymptotic convergence factor (ACF) of SESOP-TG-1 is given by the spectral radius of ϒϒϒ.

To analyze the ACF of SESOP-TG-1, we continue under the assumption that the coefficients c j,

j = 1,2,3, are fixed, and compute the optimal coefficients, yielding the smallest ACF. Denote by r an

eigenvalue of ϒϒϒ with eigenvector vvv = [vvv1,vvv2]
T ,[

BBB −c1III

III 000

][
vvv1

vvv2

]
= r

[
vvv1

vvv2

]
.

Hence, vvv1 = rvvv2 and BBBvvv1− c1vvv2 = rvvv1. This yields

BBBvvv1 =
(

r+
c1

r

)
vvv1.

Thus, vvv1 is an eigenvector of BBB with eigenvalue b , r+ c1
r leading to r2− br+ c1 = 0, with solutions

r1(b,c1) =
1
2

(
b+
√

b2−4c1

)
and r2(b,c1) =

1
2

(
b−
√

b2−4c1

)
. The spectral radius of ϒϒϒ is therefore

ρ(ϒϒϒ) =
1
2

max
b

∣∣∣b+ sgn(b)
√

b2−4c1

∣∣∣ ,
where b runs over the eigenvalues of BBB and sgn(·) is a sign function which is defined to be 1 for non-

negative arguments and -1 for negative arguments. For the remainder of our analysis we focus on the case

where the eigenvalues b of BBB are all real.

5.3.1 The Case of Real b

In many practical cases, the eigenvalues of BBB are all real, which simplifies the analysis and yields insight.

We focus next on a common situation where this is indeed the case.

Lemma 5.3.1. Assume:

1. The prolongation has full column-rank and the restriction is the adjoint of the prolongation:

IH
h = (Ih

H)
T .
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2. The coarse-grid operator AAAH is SPD.

3. The preconditioner PPP is SPD.

Then the eignevalues of BBB = (1+ c1)III− (c2PPP+ c3IIIh
HAAA−1

H IIIH
h )AAA are all real.

Proof. Because AAA is SPD, there exists a SPD matrix AAA
1
2 such that AAA

1
2 AAA

1
2 = AAA. The matrix

AAA
1
2 BBBAAA−

1
2 = (1+ c1)III−AAA

1
2 (c2PPP+ c3IIIh

HAAA−1
H IIIH

h )AAA
1
2

is similar to BBB so they have the same eigenvalues. Moreover, AAA
1
2 BBBAAA−

1
2 is evidently symmetric, so its

eigenvalues are all real.

The first two assumptions of this lemma are satisfied commonly, including of course both the case

where AAAH is defined by rediscretization on the coarse grid and the case of Galerkin coarsening. The

preconditioner PPP is SPD for some commonly used MG relaxation methods, including Richardson (where

PPP is the identity matrix), Jacobi (where PPP is the inverse of the diagonal of AAA), and symmetric Gauss-Seidel.

We next adopt the change of variables c23 = c2 + c3, α = c2/c23. This yields

BBB = (1+ c1)III− c23AAAα, (5.18)

with

AAAα =
(

αPPP+(1−α)IIIh
HAAA−1

H IIIH
h

)
AAA. (5.19)

Lemma 5.3.2. The eigenvalues of AAAα are real and positive for any α ∈ (0,1].

Proof. This follows from the fact that AAA, PPP and Ih
HAAA−1

H IH
h are SPD.

We henceforth denote the eigenvalues of AAAα by aα, and assume α∈ (0,1] (that is, c2 and c3 are of the same

sign), so the aα’s are all real and positive. We then proceed by fixing α and optimizing c1 and c23 so as to

minimize the spectral radius of ϒϒϒ. In light of Lemma 5.3.1, we have b≡ b(c1,c23,aα) = 1+ c1− c23aα,

and the ACF as a function of c1, c23 is given by:

r̄(c1,c23), ρ(ϒϒϒ) = max
aα

r̂(c1,c23,aα), (5.20)

where r̂(c1,c23,aα), 1
2

∣∣∣b+ sgn(b)
√

b2−4c1

∣∣∣. For convenience, we use r̄c1(c23) (respectively, r̄c23(c1))

to denote r̄(c1,c23) considered as a single-variable function with a fixed c1 (respectively, c23). Our

parameter optimization problem is now defined by

(c∗1,c
∗
23) = argmin

(c1,c23)

r̄(c1,c23).

The following three lemmas provide us with a closed-form solution of this minimization problem, if the

smallest and largest eigenvalues of AAAα are given.

Lemma 5.3.3. For any fixed c1 and c23, r̂(c1,c23,aα) is maximized at either amin
α or amax

α , the smallest

and largest eigenvalues of AAAα, respectively.
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Proof. Consider r̂(c1,c23,aα) in (5.20) as a continuous function of a positive variable aα ∈
[
amin

α ,amax
α

]
,

with fixed c1 and c23:

r̂(c1,c23,aα) =
1
2

∣∣∣∣b(c1,c23,aα)+ sgn(b(c1,c23,aα))
√

b2(c1,c23,aα)−4c1

∣∣∣∣ .
We distinguish between two regimes: (I): b2(c1,c23,aα)< 4c1, the square-root term is imaginary, and we

simply get r̂(c1,c23,aα) =
√

c1; (II): b2(c1,c23,aα)≥ 4c1,the square-root term is real and the derivative

of r̂(c1,c23,aα) with respect to aα is

∂r̂(c1,c23,aα)

∂aα

=−c23

2
sgn(b(c1,c23,aα))

[
1+

|b(c1,c23,aα)|√
b2(c1,c23,aα)−4c1

]
.

We ignore the irrelevant choice c23 = 0, for which the method is obviously not convergent. Using

b(c1,c23,aα) =−c23

(
aα− 1+c1

c23

)
, we get

∂r̂(c1,c23,aα)

∂aα

=
|c23|

2
sgn
(

aα−
1+ c1

c23

)[
1+

|b(c1,c23,aα)|√
b2(c1,c23,aα)−4c1

]
.

Notice that r̂(c1,c23,aα) is a symmetric function of aα−(1+c1)/c23 and it is furthermore convex because

its derivative is strictly negative for aα < (1+ c1)/c23 and positive for aα > (1+ c1)/c23. It follows that,

regardless of the sign of b2(c1,c23,aα)−4c1 throughout the regime aα ∈ [amin
α ,amax

α ], there exists no local

maximum of r̂(c1,c23,aα). Hence, r̄(c1,c23) = max
(
r̂(c1,c23,amin

α ), r̂(c1,c23,amax
α )

)
.

Lemma 5.3.4. For any fixed c1, c∗23 = 2(1+ c1)/(amax
α +amin

α ).

Proof. Consider r̂(c1,c23,aα) as a continuous function of a real variable c23 with c1 and aα fixed. For

b2(c1,c23,aα)≥ 4c1, the derivative of r̂(c1,c23,aα) with respect to c23 is

∂r̂(c1,c23,aα)

∂c23
=
|aα|

2
sgn
(

c23−
1+ c1

aα

)[
1+

|b(c1,c23,aα)|√
b2(c1,c23,aα)−4c1

]
.

As in Lemma 5.3.3, the meeting point of r̂(c1,c23,amax
α ) and r̂(c1,c23,amin

α ), which lies between (1+

c1)/amax
α and (1+ c1)/amin

α , is where r̂(c1,c23,aα) is minimized with respect to c23 and then the optimal

c23 enforces r̂(c1,c23,amax
α ) = r̂(c1,c23,amin

α ) resulting in 1+ c1− c23amax
α =−(1+ c1− c23amin

α ), leading

to c∗23 =
2(1+c1)

amin
α +amax

α

. For b2(c1,c23,aα)< 4c1, we have r̂(c1,c23,aα) =
√

c1 which is irrelevant to c23.

Plugging c∗23 into (5.20) yields

r̄c∗23
(c1) =

1
2

∣∣∣∣µ(1+ c1)+
√

µ2(1+ c1)2−4c1

∣∣∣∣ , (5.21)

where µ = (κ−1)/(κ+1) ∈ (0,1) with κ = amax
α

amin
α

> 1 the condition number of AAAα. Lemma 5.3.5 provides

the optimal c1, which minimizes r̄c∗23
(c1) in (5.21).

Lemma 5.3.5. c∗1 =
(√

κ−1√
κ+1

)2
.
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Proof. Consider two regimes: (I) µ2(1+c1)
2≤ 4c1; (II) µ2(1+c1)

2≥ 4c1. For (I), we have r̄c∗23
(c1)=

√
c1

and c1 ∈
[
c−1 ,c

+
1

]
where c±1 =

(
2−µ2±

√
4−4µ2

)
/µ2 are the two solutions of µ2(1 + c1)

2 = 4c1.

Evidently, c−1 is the solution to minimize rc∗23
(c1).

For (II), we have c1 ≤ c−1 or c1 ≥ c+1 . We first note that

µ(1+ c1)+
√

µ2(1+ c1)2−4c1 > 0.

and then r̄c∗23
(c1) =

1
2

[
µ(1+ c1)+

√
µ2(1+ c1)2−4c1

]
. Evidently, the derivative of r̄c∗23

(c1) with respect

to c1 is
∂r̄c∗23

(c1)

∂c1
=

1
2

(
µ+

µ2(1+ c1)−2√
µ2(1+ c1)2−4c1

)
. (5.22)

Note that µ2(1+c1)−2√
µ2(1+c1)2−4c1

is positive for c1 >
2
µ2 −1 and negative for c1 <

2
µ2 −1, hence, (5.22) is positive

for c1 > c+1 , whereas for c1 < c−1 we have

∂r̄c∗23
(c1)

∂c1
= 1

2

(
µ−
√

(µ2(1+c1)−2)2

µ2(1+c1)2−4c1

)
= µ

2

(
1−
√

µ4(1+c1)2−4µ2(1+c1)+4
µ4(1+c1)2−4µ2c1

)
= µ

2

(
1−
√

1+ 4(1−µ2)
µ4(1+c1)2−4µ2c1

)
< 0

The last inequality is due to the fact that that 0< µ< 1 and µ2(1+c1)
2−4c1 > 0. Evidently, the optimal c1

to minimize r̄c∗23
(c1) is either c−1 or c+1 . However, r̄c∗23

(c1)> 1 for c+1 that c−1 =
(

2−µ2−
√

4−4µ2
)
/µ2

is the solution. Substituting the expression of µ into c−1 , we get the desired result.

Substituting the expression of c∗1 into (5.21), we get the worst-case convergence factor r∗ with optimal c∗1
and c∗23

r̄∗ , r̄(c∗1,c
∗
23) =

√
κ−1√
κ+1

. (5.23)

Note that c∗1 = (r̄∗)2 indicates that the history term becomes significant if the problem is ill-conditioned.

Remark 5.3. The optimal ACF of the fixed-coefficient variant of SESOP-TG-1 is found to be r̄∗ =
√

κ−1√
κ+1 ,

where κ is the condition number of AAAα, optimized over α ∈ (0,1]. (The optimal choice of α will be

discussed further below.) By using the definition of κ, the optimal coefficient for the preconditioned

gradient term as specified in Lemma 5.3.4 can be written as

c∗23 =
4

amin
α (
√

κ+1)2 . (5.24)

Comparing SESOP-TG-1 to SESOP-TG-0. By setting c1 = 0, we reduce to SESOP-TG-0 and the

optimal c23 becomes

c∗23 =
2

amin
α (κ+1)

. (5.25)

Furthermore, by (5.21), the asymptotic convergence factor of SESOP-TG-0 is given by

r̄∗ =
κ−1
κ+1

. (5.26)
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Comparing (5.23) with (5.26), we see the significant improvement provided by the use of a single history

direction, with the condition number replaced by the square root. This result is reminiscent of the conjugate

gradients (CG) method compared to steepest descent (SD) for quadratic problems, and indeed there is

an equivalence between SESOP and CG (respectively, SD) for the case of single history (respectively,

no history) with α = 1. We note that the condition number in our scheme is that of AAAα, not AAA, which

differs from the case where we do not use the CGC direction. The advantage of SESOP is in allowing the

addition of various search directions, at the cost of optimizing the coefficients. This study is partly aimed

at reducing this cost.

5.3.2 Towards Optimizing the Condition Number of AAAα

The previous analysis indicates that we should aim to minimize κ, the condition number of AAAα. In certain

cases, particularly when AAA is a circulant matrix (typically the discretization of an elliptic PDE with

constant coefficients on a rectangular or infinite domain), this can be done by means of Fourier analysis

[75], as discussed in Section 5.3.3. Here, we begin with a more general discussion to gain insight into

this matter. We consider the case of Galerkin coarsening, AAAH = (IIIh
H)

T AAAIIIh
H , and PPP = III. Guided by [96],

we consider the case where the columns of the prolongation matrix IIIh
H are comprised of a subset of the

eigenvectors of AAA.

Lemma 5.3.6. Let {ai,aaai}, i = 1, . . . ,N, denote the eigenvalues and eigenvectors of AAA. Assume that the

columns of the prolongation matrix IIIh
H are comprised of a subset of the eigenectors of AAA, and denote by

R (IIIh
H) the range of the prolongation, that is, the subspace spanned by the columns of IIIh

H . Denote

a f max = max
i:aaai /∈R (IIIh

H)
ai, a f min = mini:aaai /∈R (IIIh

H)
ai,

acmax = max
i:aaai∈R (IIIh

H)
ai, acmin = mini:aaai∈R (IIIh

H)
ai.

Then, the condition number of AAAα in (5.19) with PPP = III is given by

κ =
max(αa f max, αacmax +1−α)

min(αa f min, αacmin +1−α)
. (5.27)

Proof. Any eigenvector aaai ∈ R(IIIh
H) (respectively, aaai /∈ R (IIIh

H))) is an eigenvector of the CGC matrix

IIIh
HAAA−1

H (IIIh
H)

T AAA, with eigenvalue 1 (respectively, 0), because if aaai ∈ R (IIIh
H) then it can be written as

aaai = IIIh
Heee j (that is, it is the jth column for some j), so[

IIIh
HAAA−1

H (IIIh
H)

T AAA
]

aaai = IIIh
H

[
(IIIh

H)
T AAAIIIh

H

]−1 [
(IIIh

H)
T AAAIIIh

H

]
eee j = IIIh

Heee j = aaai,

whereas if aaai /∈ R (IIIh
H) then it is orthogonal to the columns of IIIh

H , so[
IIIh

HAAA−1
H (IIIh

H)
T AAA
]

aaai =
[
IIIh

HAAA−1
H (IIIh

H)
T
]

aiaaai = 000.

It follows that the eigenvectors of AAAα are aaai, with eigenvalues given by

ai
α =

{
αai +1−α if aaai ∈ R (IIIh

H),

αai otherwise.
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By using the definition of κ, a f max, acmax, a f min, and acmin, the desired result is derived.

We see that the second term in AAAα, which corresponds to the direction provided by the CGC, increases

the eigenvalues associated with the columns of the prolongation by 1−α. It thus follows from (5.27)

that, to obtain any advantage at all from the CGC direction in reducing κ, the eigenvector associated with

the smallest ai must be included amongst the columns of the prolongation, and therefore acmin ≤ a f min.

Similarly, considering the numerator in (5.27), it is clearly advantageous that the eigenvector corresponding

to the largest ai not be included in the range of the prolongation. With these assumptions, we obtain the

following result for the optimal α which minimizes κ.

Theorem 5.1. Assume acmin ≤ a f min and acmax ≤ a f max. Then, the condition number κ is minimized by

choosing

αopt ,
1

1+a f min−acmin
≤ 1,

resulting in the optimal κ,

κopt ,

{ a f max
a f min

if a f max−a f min ≥ acmax−acmin,

1+ acmax−acmin
a f min

otherwise.
(5.28)

Proof. To minimize κ, the optimal α should minimize the numerator and maximize the denominator. Note

that αtop =
1

1+a f max−acmax
and αbot =

1
1+a f min−acmin

are the ones to minimize the numerator and maximize

the denominator, respectively. For a f max−a f min ≥ acmax−acmin, we have αtop ≤ αbot and then:

1. α ∈ (0,αtop)⇒ κ = αacmax+1−α

αa f min
, dκ

dα
=− 1

α2a f min
< 0, choosing α = αtop.

2. α ∈ (αtop,αbot)⇒ κ =
a f max
a f min

, choosing any α ∈ (αtop,αbot).

3. α ∈ (αbot ,1)⇒ κ =
αa f max

αacmin+1−α
, dκ

dα
=

a f max
(αacmin+1−α)2 > 0, choosing α = αbot .

Evidently, the optimal α can be any one between αtop and αbot yielding κopt =
a f max
a f min

. By applying the

same reasoning to a f max− a f min < acmax− acmin, the optimal α achieves at αopt , αbot . Summarizing,

αbot is the optimal solution for both cases. Substituting αopt = αbot into (5.27), we get the desired result.

Remark 5.4. Notice that κopt is either equal to a f max/a f min or at most “slightly larger” because

1+
acmax−acmin

a f min
=

a f max

a f min
+1−

a f max−acmax +acmin

a f min
<

a f max

a f min
+1 .

That is, even in the regime a f max−a f min < acmax−acmin, the optimal condition number κopt is increased

by less than 1. Note that κ = a f max/a f min yields a convergence factor (with no history) of µ = κ−1
κ+1 , which

matches that of the classical TG algorithm with optimally weighted Richardson relaxation followed

by CGC. In Section 5.3.4, we will show the connection of κopt presented here with the so-called h-

ellipticity measure, which is a qualitative criterion for the existence of local smoothers for a given elliptic

PDE [74]. Finally, we note that the optimal prolongation is obtained by choosing the columns of Ih
H

to be the eigenvectors associated with the smallest eigenvalues of AAA (similarly to the classical TG case

[96]). This clearly minimizes the ratio a f max/a f min. Furthermore, this choice yields acmax ≤ a f min, so if

a f max−a f min < acmax−acmin (so κopt > a f max/a f min), then we obtain κopt = 1+ acmax−acmin
a f min

< 2.
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5.3.3 Optimizing the Condition Number of AAAα in Practice

As our analysis indicates, optimizing α so as to minimize κ is a crucial step towards obtaining an optimal

convergence factor. In general, the complexity of minimizing κ is very high and the explicit results of

Section 5.3.2 are only valid when the prolongation is comprised of eigenvectors of AAA, which is impractical,

because the prolongation needs to be very sparse for efficiency. In certain cases, such as when AAA results

from discretizing elliptic PDEs with constant or slowly varying coefficients, Local Fourier Analysis (LFA)

[9, 75] can be used in conjunction with the analysis of Section 5.3.2 to yield effective approximate results.

LFA, also called Local Mode Analysis, is a useful quantitative tool for estimating the asymptotic

convergence factor ACF of MG methods for elliptic PDEs with constant coefficients. We describe

LFA here briefly, and for further details refer the reader to standard multigrid textbooks or to [75], a

comprehensive book on LFA for MG. We consider the two-dimensional case for simplicity. For AAA that is

a discretization of a constant-coefficient elliptic PDE on an infinite or doubly periodic domain of uniform

mesh-size h, grid-based functions of the form ψ(θθθ,x,y) = eιθ1x/heιθ2y/h with θθθ = (θ1,θ2) ∈ [−π,π)2 and

ι =
√
−1, are eigenfunctions of AAA. Furthermore, if standard shift-invariant prolongation is used, such

as bilinear or bicubic interpolation, then appropriate subsets of dimension four of the eigenfunctions

ψ(θθθ,x,y) form subspaces that are invariant under multiplication by AAAα (as in standard two-level analysis).

The upshot is that we can compute the eigenvalues of AAAα at a fairly moderate cost, and use linesearch to

find α which optimizes the condition number of AAAα. This approach is demonstrated later in numerical

examples, including the option of saving computational cost by optimizing α on relatively coarse grids.

We can furthermore obtain a very cheap approximation to the optimal α and κ by making the

simplifying assumptions that are commonly used in computing the so-called smoothing factor of relaxation

(known as smoothing analysis) as follows. Denote by a(θθθ) the eigenvalue of AAA associated with the grid-

function ψ(θθθ,x,y), and partition the θθθ domain into low- and high-frequencies as in Definition 5.3.7.

Definition 5.3.7 (Low- and High-frequency components).

a(θθθ) is a low-frequency component ⇐⇒ θθθ ∈ T low :=
[
−π

2 ,
π

2

)2
,

a(θθθ) is a high-frequency component ⇐⇒ θθθ ∈ T high := [−π,π)2 \
[
−π

2 ,
π

2

)2
.

Smoothing analysis simplifies by assuming that the CGC acts as a projection onto the high-frequency

subspace, that is, it has no effect on high-frequency error components, while it eliminates exactly low-

frequency error components. Under these simplifying assumptions, we obtain

a f max =maxθθθ∈T high a(θθθ), a f min =minθθθ∈T high a(θθθ),

acmax =maxθθθ∈T low a(θθθ), acmin =minθθθ∈T low a(θθθ).
(5.29)

Moreover, the eigenvalues of the second term in AAAα are given by γ(θθθ), a(θθθ)
aH(2θθθ) with aH(2θθθ) the eigenvalues

of AAAH for θθθ ∈ T low [97]. Now, we can write κ as:

κ =
max(αa f max, αacmax +(1−α)γmax(θθθ))

min(αa f min, αacmin +(1−α)γmin(θθθ))
, (5.30)

where γmax(θθθ) and γmin(θθθ) denote the maximum and minimum value of γ(θθθ), respectively. Similarly to
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Theorem 5.1, the optimal α is given by

αopt =
1

1+ a f min−acmin
γmin(θθθ)

. (5.31)

We note that, for elliptic PDEs, the accuracy of using the approximations (5.29) and γ(θθθ) depend on the

order of intergrid transfers [98, 97]. In the following numerical tests, we evaluate experimentally the

accuracy of using (5.31) to estimate the fixed stepsizes in practice.

5.3.4 A Connection with the h-ellipticity Measure

Using Definition 5.3.7, we define an “idealized” MG method as a two-grid method that affects high-

frequency error components only on the fine grid and eliminates all low-frequency error components

via the CGC, corresponding to (5.29). Then, the ACF of an idealized SESOP-TG-1 is
√

κopt−1√
κopt+1 with

κopt =
a f max
a f min

, corresponding to the discussion of Section 5.3.2 for ill-conditioned problems. Alternatively,

we can express this idealized ACF in terms of Eh(AAA) = 1
κopt

, which is known in the literature as the

h-ellipticity measure, obtaining r = 1−
√

Eh
1+
√

Eh
. For SESOP-TG-0, in contrast, the ACF becomes r = 1−Eh

1+Eh
,

which is the well-known smoothing factor of optimally damped Jacobi relaxation for symmetric problems

[74].

5.3.5 Numerical Tests—Continued

In this section, we first test the accuracy of using (5.17) to predict the ACF of SESOP-TG-1 with

fixed stepsizes. Then, compare the ACF with minimization over the subspace to that obtained with

optimized fixed stepsizes. Finally, we examine the performance of the two proposed heuristic methods (cf.

Section 5.3.3) for estimating the fixed stepsizes. The rotated anisotropic diffusion problem is chosen as

the test problem,

uss + εutt = f , (5.32)

where uss and utt denote the second partial derivatives of u in the (s, t) coordinate system. Denote by φ the

angle between (s, t) and the grid-aligned coordinate system, (x,y). We rewrite (5.32) as

(C2 + εS2)uxx +2(1− ε)CSuxy +(εC2 +S2)uyy = f , (5.33)

where C = cosφ and S = sinφ. Using a nine-point stencil,−
1
2(1− ε)CS εC2 +S2 1

2(1− ε)CS

C2 + εS2 −2(1+ ε) C2 + εS2

1
2(1− ε)CS εC2 +S2 −1

2(1− ε)CS

 ,
to discretize (5.33) on a uniform grid with mesh-size h and prescribed boundary conditions, we get a

linear system of the form

AAAhuuuh = fff h. (5.34)
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ACF Prediction

In our first test, we simply choose c3 = 1, and κ = 1
Eh

, and then use Lemmas 5.3.4 and 5.3.5 to compute

c1 and c2. The resulting algorithm is referred to as “SESOP-TG-1-Fixed”. We discretize (5.33) on

a 256× 256 grid, imposing Dirichlet boundary conditions, and we employ bilinear prolongation and

full-weighted residual transfers. The coarse-grid operators are defined by direct rediscretization. Finally,

we set P = III, i.e., no preconditioning. The ACF achieved in practice by SESOP-TG-1-Fixed is evaluated

as the geometric mean of the convergence factor per iteration in the last 5 iterations, which are terminated

at 500 iterations or when the residual norm is smaller than 10−8, whichever comes first. The convergence

factor at the kth iteration is defined by the ratio of the successive residual norms ‖rrrh
k‖2/‖rrrh

k−1‖2, where

rrrh
k = fff h−AAAhuuuh

k and uuuh
k is the approximate solution at the kth iteration. In Figure 5.5, we see that the ACF

predicted by the spectral radius of ϒϒϒ in (5.17) matches the practical results well.

1 0.1 0.05 0.01 0.001 0.0001
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

F

SESOP-TG-1-Fixed
Prediction

(a) φ = 0

1 0.1 0.05 0.01 0.001 0.0001
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

F

SESOP-TG-1-Fixed
Prediction

(b) φ = π

100

1 0.1 0.05 0.01 0.001 0.0001
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
C

F

SESOP-TG-1-Fixed
Prediction

(c) φ = π

5

1 0.1 0.05 0.01 0.001 0.0001
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
C

F

SESOP-TG-1-Fixed
Prediction

(d) φ = π

4

Figure 5.5: Comparison of the predicted ACF to the convergence factor achieved in practice.

Comparison between Subspace Minimization and Optimal Fixed Stepsizes

Next, we compare the ACFs of three different approaches to determining the fixed stepsizes: 1) SESOP-

TG-1-Fixed defined above; 2) subspace minimization (classical SESOP); 3) optimized fixed stepsizes. The

optimized stepsizes are obtained by minimizing the true condition number κ of AAAα in (5.19) by employing

linesearch over α. The test problem remains unchanged, except that we test both bilinear and bicubic
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Table 5.1: Comparison of the ACF of SESOP-TG-1-Fixed (TG-1), classical subspace minimization
(SESOP), and optimized stepsizes (Opt). The idealized convergence factor of Section 5.3.4, based on the
h-ellipticity measure, is included as a benchmark (Idealized).

φ ε
Bilinear Bicubic

Idealized
TG-1 SESOP Opt TG-1 SESOP Opt

0 1 0.333 0.332 0.332 0.333 0.333 0.331 0.333
π

6 10−3 0.669 0.561 0.563 0.587 0.533 0.532 0.587
π

6 10−4 0.676 0.563 0.565 0.588 0.534 0.533 0.588
π

4 10−3 0.753 0.500 0.535 0.653 0.454 0.443 0.446
π

4 10−4 0.757 0.502 0.537 0.658 0.451 0.445 0.446

prolongations and use 64×64 grids. The ACF achieved in practice is estimated as above by the geometric

mean of the last 5 iterations when the algorithm reaches 500 iterations or the residual norm is smaller than

10−8. Note also that κopt of Section 5.3.4, i.e., one over the h-ellipticity measure, is used here to represent

the idealized ACF for comparison.

From Table 5.1, we clearly see that optimized fixed stepsizes yield a lower ACF than SESOP-TG-1-

Fixed for the rotated anisotropic diffusion problem, and in fact its ACF is at least as good as that obtained

by subspace minimization. This suggests that, if we can estimate the optimal stepsizes efficiently, then we

can significantly reduce computation time because the subspace minimization, in general, is expensive.

Also, we see that bicubic prolongation yields a lower ACF than bilinear prolongation, consistent with

[98].

The relative disadvantage of SESOP-TG-1-Fixed for rotated anisotropic diffusion stems mainly from

fixing c3 = 1, whereas the optimal c3 is higher for this problem, consistent with the analysis of [97].

Optimizing κ of AAAα in Practice

We next study the efficacy of the two heuristic methods proposed in Section 5.3.3—estimating κopt on a

coarse grid or using (5.31)—to select the fixed stepsizes.

In the following tests we use 1024×1024 grids to discretize (5.33). Denote by ropt
Num the ACF obtained

by optimizing κ of AAAα on a Num×Num grid. Then, we define the “Deterioration Factor” (DF),

DF(Num),
logropt

1024

logropt
Num

,

to measure the deterioration of the ACF incurred by optimizing κ on a coarser grid. For example,

DF(Num) = 2 means that, asymptotically, it takes twice as many iterations of the algorithm which uses

fixed stepsizes optimized on coarser grids to achieve the same error reduction as a single iteration with

the true optimal stepsize. Additionally, we compare between bilinear and bicubic interpolation [98].

In Figure 5.6, we see DF(Num) ≈ 1.05 for Num ≥ 128, which means that determining the stepsizes

on 128×128 grids results in just a ∼ 5% asymptotic increase in the required iterations. Moreover, we

observe that the use of higher order interpolation tends to reduce the DF.

Now, we study the accuracy of using (5.31) for selecting the fixed stepsizes. From [97, Equation (14)],

we know that the accuracy of (5.30) for approximating κ of AAAα depends on the order of intergrid transfers.
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Figure 5.6: DF(Num) for various ε and φ.

In Figure 5.7, we show a comparison of ACFs with different orders of intergrid transfers. Note that the

intergrid transfers used here have the same order for low and high-frequency modes. From Figure 5.7,

we find that (5.31) becomes more accurate and very close to the idealized estimate when the order of

restriction increases. This is due to the fact that higher order intergrid transfer operators filter out the

high-frequency modes, and therefore the idealized assumptions are more closely satisfied. Note that the

optimized algorithm is even better than the the idealized one, as also observed in Table 5.1, because the

optimized algorithm takes into account all the modes globally when minimizing κ. Moreover, for the

optimized version we see that increasing the order of the restriction begins increase the ACF slightly,

bringing it closer to the idealized value. We finally note that the purpose of this test is to academically

study the relationship between the accuracy of (5.31) and the use of intergrid transfers and, in practice, it

is not cost-effective to use very high order intergrid transfers.

Remark 5.5. In this part we have examined the accuracy of two heuristic methods for determining the

fixed stepsizes. In practice, the method shown in Figure 5.6 may be more attractive because the increase

of iterations due to computing the stepsizes on a coarse grid is modest. However, for some practical

problems, (5.31) is also attractive because its computation is cheaper than working on a coarse grid.

Moreover, for many practical problems, we need to solve (5.34) with multiple fff h, and then the additional

computation for selecting the stepsizes is negligible.

Practical Tests

Now we study the performance of applying the multilevel version (V-cycle) of the proposed scheme to

(5.33). The multilevel version of Algorithm 5.1 is denoted by “MG”. Using preconditioned conjugate

gradients (PCG) with MG as the preconditioner is denoted by “PCG-MG”. The fixed-stepsize version of

SESOP-MG-1 is denoted by SESOP-MG-1-Opt when αopt is computed on a coarse grid and by SESOP-

MG-1-(5.31) when (5.31) αopt is used. We use 1024×1024 grids to discretize (5.33) and obtain αopt for

SESOP-MG-1-Opt on 128×128 grids. The coarse problems are obtained by direct rediscretization, and

the bilinear prolongation and full-weighted residual transfers are employed. For coarse problems, we use

Jacobi relaxation with optimal damping factor as estimated in [78] and ν1 = 2 and ν2 = 1. Note that on
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Figure 5.7: Comparison of ACFs for varying order of intergrid transfers, using 512× 512 grids and
Galerkin coarsening. First row: bilinear interpolation; Second row: bicubic interpolation. “Idealized” and
“Opt” refer to Table 5.1.

the finest level, we set ν1 = 0 and ν2 = 0 and only one evaluation of the gradient is allowed.

In Figure 5.8(a) (ε = 1, φ = 0), we see SESOP-MG-1 and PCG-MG perform identically. However, in

Figure 5.8(c) (ε = 10−3, φ = π

4 ), we find that SESOP-MG-1 becomes faster than PCG-MG. Indeed, in this

case, it helps to scale the residual before restricting to the coarse for MG (also see the deterioration of MG

in Figure 5.8(c)), but SESOP-MG-1 can automatically scale the residual via the subspace minimization

[82]. Moreover, from Figures 5.8(b) and 5.8(d), we observe that SESOP-MG-1-Opt and SESOP-MG-1-

(5.31) are the fastest methods in terms of CPU time because these two methods inherit the effectiveness

of SESOP-MG-1 but need much less CPU time. It is interesting to note that SESOP-MG-1-Opt and

SESOP-MG-1-(5.31) work almost the same in these two tests, demonstrating the effectivenss of the

proposed strategies for determining the stepsizes.
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Figure 5.8: Comparison of different methods for (5.33). Test on 1024×1024 grids and use the V-cycle.

5.4 Conclusion

In this chapter, we merge multigrid (MG) optimization with SESOP optimization. The numerical

experiments on linear and nonlinear problems illustrate the effectiveness and robustness of our scheme.

Moreover, for linear problems, if only one history is used, we derive optimal fixed stepsizes that allow us

to avoid the expensive subspace minimization and save computation. Specifically, for elliptic PDEs with

constant coefficients, we propose two heuristic methods to estimate the fixed stepsizes based on LFA and

smoothing analysis and the efficiency of these two methods is demonstrated in numerical tests.
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Chapter 6

Online Learning Sensing Matrix and
Sparsifying Dictionary Simultaneously for
Compressive Sensing

In this chapter, we describe our work on learning sensing matrix and sparsifying dictionary simultaneously

for compressive sensing. This chapter is based on the following published paper:

• Tao Hong and Zhihui Zhu, Online Learning Sensing Matrix and Sparsifying Dictionary Simultane-

ously for Compressive Sensing, Signal Processing, vol. 153, pp. 188-196, Dec. 2018.

6.1 Introduction

Sparse representation (Sparseland) has led to numerous successful applications, e.g., image processing,

machine learning, pattern recognition, and compressive sensing (CS) [2, 99, 3, 100, 17, 16] etc. Sparseland

assumes that a signal xxx ∈ RN can be represented as a linear combination of a few columns of a matrix

ΨΨΨ ∈ RN×L (also called dictionary):

xxx = ΨΨΨθθθ+ eee, (6.1)

where θθθ ∈RL is the representation coefficient of xxx over ΨΨΨ which only has a few non-zeros and eee 6= 000 ∈RN

refers to the sparse representation error (SRE). The signal xxx is called K-sparse in ΨΨΨ if ‖θθθ‖0 ≤ K where

‖θθθ‖0 is used to count the number of non-zeros in θθθ.

The choice of dictionary ΨΨΨ depends on specific applications and can be a prescribed one, e.g.,

discrete cosine transform (DCT), wavelets transform or a multiband modulated discrete prolate spheroidal

sequences dictionary [101] etc. Moreover, one can also learn a dictionary ΨΨΨ (called dictionary learning),

such that a set of P training signals {xxxk,k = 1,2, · · · ,P} is sparsely represented by optimizing ΨΨΨ. There

exist many efficient algorithms to learn such a dictionary [3], e.g., the method of optimal directions (MOD)

[100] and the K-singular value decomposition (KSVD) algorithm [17].

CS is an emerging framework that enables us to exactly recover the signal xxx, which is sparse or sparsely

represented by a dictionary ΨΨΨ, from a number of linear measurements that is considerably lower than the

size of samples required by the Shannon-Nyquist theorem [16]. Using a random matrix ΦΦΦ ∈ RM×N called
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sensing matrix (a.k.a projection matrix), we obtain the linear measurements yyy through

yyy = ΦΦΦxxx = ΦΦΦΨΨΨθθθ+ΦΦΦeee, (6.2)

where M�N. Many efforts have been devoted to optimize the sensing matrix with a prescribed dictionary

resulting in a CS system that outperforms the standard one (random matrix) in various cases [102, 103,

104, 105, 106, 107, 108].

Recently, researchers have found that optimizing the sensing matrix and dictionary simultaneously

for CS yields higher signal reconstruction accuracy than the classical approach of optimizing the sensing

matrix for a prescribed dictionary [107, 108]. The main idea underlying [107, 108] is to consider the

influence of SRE in optimizing the sensing matrix and learning the dictionary (see Section 6.3 for the

formal problem). In contrast to [107], closed-form solutions for updating the sensing matrix and the

dictionary are derived in [108], yielding better performance in terms of signal recovery accuracy. However

the method in [108] requires many singular value decompositions (SVDs) hindering the efficiency.

Although the methods proposed in [107, 108] for jointly optimizing ΦΦΦ and ΨΨΨ work well for a small-

scale training dataset (e.g., N = 64 and P = 104), they become inefficient (and even impractical) if the

dimension of the dictionary is high or the size of training dataset is very large (e.g., P > 106) or for the case

involving dynamic data like video streams. It is easy to see that the methods in [107, 108] require heavy

memory and computations to address such a large scale problem because they have to sweep all of the

training data in each dictionary updating procedure. Inspired by [109, 110], an online algorithm with less

complexity and memory is introduced to address the same learning problem shown in [107, 108] but on a

large dataset. Note that, in this chapter, large or large-scale dataset means a dataset that contains a large

amount of training data, i.e., P is very large. We use a toy example to briefly explain the benefit of training

on a large-scale dataset. Assume that the dimension of the dictionary is 64× 100 and the number of

non-zeros in the sparse vector θθθ is 4. Then the number of subspaces in this dictionary is
(100

4

)
≈ 3.9×106.

Thus, we see that such a dictionary provides a rich number of subspaces which motivates us to train the

dictionary on a large-scale dataset to explore the dictionary to represent the signals of interest better. One

can still imagine that along with the increase of the dimension of the dictionary, the number of subspaces

will become much richer and we can expect such a dictionary to yield many interesting properties. Indeed,

the benefit of learning a dictionary on a large dataset or a high dimension (without training the sensing

matrix) has been experimentally demonstrated in [111, 112, 113]. Moreover, the simulations shown in

this chapter also indicate the advantage of learning the CS system (both the dictionary and the sensing

matrix) on a large-scale dataset.

Note that, at each step, the sensing matrix is either updated with an iterative algorithm in [107] or an

alternating-minimization method in [108], both requiring many SVD computations. To avoid this, we

present an efficient method to optimize the sensing matrix which is robust with respect to the SRE. The

proposed method is inspired by the recent results in [104, 114, 106] for robust sensing matrices, but it

differs from these works in which there is no need to tune the trade-off parameter and hence it is more

suitable for online learning and dynamic data. The experiments on natural images demonstrate that jointly

optimizing the Sensing Matrix and Sparsifying Dictionary (SMSD) on a large dataset has much better

performance in terms of signal recovery accuracy than that of [107, 108]. Notice that in this chapter we

are interested in designing a CS system for natural images.

The rest of this chapter is organized as follows. In Section 6.2, a novel model is proposed to design
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the sensing matrix to reduce the mutual coherence (cf. (7.1)) between each two columns in ΦΦΦΨΨΨ and

to overcome the influence of SRE. Moreover, a closed-form solution is derived to obtain the optimized

sensing matrix which is parameter free and then it is suitable for the following joint learning SMSD

method. A joint optimization algorithm for learning SMSD on a large dataset is suggested in Section 6.3.

To learn the sparsifying dictionary on a large dataset efficiently, an online method is introduced. Note that

the online algorithm is applied to update the dictionary because the training data is only involved in the

dictionary learning procedure (6.13). For brevity, we still call the whole joint algorithm online SMSD.

Numerical experiments on natural images are carried out in Section 6.4 to demonstrate the effectiveness

of the proposed algorithm and the advantage of training on a large dataset compared with other methods.

Conclusion and future work are given in Section 6.5.

Notation: MATLAB notation is adopted in this chapter. For a vector, vvv(m) denotes the mth component of

vvv. For a matrix, QQQ(m,n) means the (m,n)th element of matrix QQQ, while QQQ(m, :) and QQQ(:,m) indicate the

mth row and column vector of QQQ, respectively.

6.2 An Efficient Method for Robust Sensing Matrix Design

Following the terminology used in [104, 106], a robust sensing matrix refers to a sensing matrix which

yields robust performance for signals with eee 6= 0. We note that one of the major purposes in optimizing

the sensing matrix is to reduce the coherence between all pairs of columns of the equivalent dictionary

ΦΦΦΨΨΨ leading to [102, 103, 115, 116] which demonstrate that the optimized sensing matrix yields much

better performance than the one with a random sensing matrix for the signals with eee = 000. However, it was

recently realized [104, 114, 106] that such a sensing matrix is not robust with respect to eee 6= 0 and thus

the corresponding CS system results in poor performance. For natural images, the SRE always exists even

when we represent the images with a well designed dictionary. Moreover, the average mutual coherence

(i.e., the coherence measured with `2 norm instead of the infinity norm) rather than the exact mutual

coherence is suggested in [104, 114] for designing an optimized robust sensing matrix. Specifically, a

robust sensing matrix is attained by solving [104, 114]:

min
ΦΦΦ

‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F +λ‖ΦΦΦEEE‖2

F , (6.3)

where ‖ · ‖F denotes the Frobenius norm, IIIL represents an identity matrix with dimension L, EEE(:,k) =

eeek, k = 1, · · · ,P, and λ is a trade-off parameter that balances the coherence of the equivalent dictionary and

the robustness of the sensing matrix with respect to the SRE. In [106], it is suggested to replace the penalty

‖ΦΦΦEEE‖2
F by ‖ΦΦΦ‖2

F (which is independent of the training data) since ‖ΦΦΦ‖2
F has the same effectiveness as

‖ΦΦΦEEE‖2
F when the SRE is modelled as Gaussian noise and P→ ∞. Thus, the robust sensing matrix is

optimized following [106] by

min
ΦΦΦ

f (ΦΦΦ) = ‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F +λ‖ΦΦΦ‖2

F . (6.4)

Numerical experiments with natural images show that the optimized sensing matrix obtained by

solving (6.4) with a well-chosen λ yields state-of-the-art performance in CS-based image compression

[106]. However, we note that it is nontrivial to choose an optimal λ for (6.4) since the two terms

‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F and ‖ΦΦΦ‖2

F have different physical meanings: the former represents the average
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mutual coherence of the equivalent dictionary ΦΦΦΨΨΨ, while the latter is the energy of the sensing matrix

ΦΦΦ. For off-line applications when the dictionary is fixed, it is suggested to choose a λ by a grid search

method [104, 114, 106]. However, this strategy becomes very inefficient for online applications when the

dictionary ΨΨΨ is evolving, which is the case we consider in this chapter. To avoid tuning the parameter λ,

we suggest designing the robust sensing matrix with the following two steps: (i) find a set of solutions

which minimize ‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F (i.e., solve (6.4) without the term ‖ΦΦΦ‖2

F ); (ii) then choose a ΦΦΦ that

has the smallest energy. Thus, we consider the following optimization problem to design the sensing

matrix:
min
ΦΦΦ∈S

‖ΦΦΦ‖2
F

S = arg min
ΦΦΦ∈RM×N

g(ΦΦΦ) = ‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F .

(6.5)

Let UM,N̄ :=
{

UUUM,N̄ : UUUT
M,N̄UUUM,N̄ = IIIN̄

}
denote the set of M× N̄ orthonormal matrices for N̄ ≤M. When

N̄ = M, to simplify the notation, we use UM to denote the set of M×M orthonormal matrices. The

following result establishes a set of closed-form solutions to (6.5):

Theorem 6.1. Let ΨΨΨ =UUUΨΨΨΛΛΛVVV T
ΨΨΨ

be an SVD of ΨΨΨ, where Rank(ΨΨΨ) = N̄ ≤N, ΛΛΛ = diag(λ1,λ2, · · · ,λN̄)>

0 with λ1 ≥ λ2 ≥ ·· · ≥ λN̄ , and UUUΨΨΨ and VVV ΨΨΨ are N× N̄ and L× N̄ orthonormal matrices, respectively.

When N̄ ≥M, a set of optimal solutions for (6.5) is given by

W1 :=
{

ΦΦΦ : ΦΦΦ =
[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
,UUUM ∈UM

}
. (6.6)

On the other hand, when N̄ < M, a set of optimal solutions for (6.5) is given by

W2 :=
{

ΦΦΦ : ΦΦΦ =UUUM,N̄ΛΛΛ
−1UUUT

ΨΨΨ
,UUUM,N̄ ∈UM×N̄

}
. (6.7)

Proof. We first rewrite g(ΦΦΦ) as

g(ΦΦΦ) = ‖IIIL−VVV ΨΨΨΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛVVV T
ΨΨΨ
‖2

F

= ‖IIIN̄−ΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛ‖2
F︸ ︷︷ ︸

h(ΦΦΦ)

+L− N̄.

Thus, minimizing g(ΦΦΦ) is equivalent to minΦΦΦ h(ΦΦΦ). We proceed by considering the following two cases.

Case I: N̄ ≥M. Noting that rank(ΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛ) = M ≤ N̄ and using the Eckart-Young-Mirsky

theorem [117], we have h(ΦΦΦ)≥ N̄−M which achieves its minimum when

ΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛ =UUU N̄,MUUUT
N̄,M, (6.8)

where UUU N̄,M ∈UN̄,M. Through (6.8), we get the set of ΦΦΦ:

ΦΦΦ ∈ S =
{

UUUT
N̄,MΛΛΛ

−1UUUT
ΨΨΨ

: UUU N̄,M ∈∈UN̄,M

}
. (6.9)

Now we identify a ΦΦΦ which has the smallest ‖ΦΦΦ‖2
F . Note that

‖ΦΦΦ‖2
F = Tr

(
ΦΦΦ

T
ΦΦΦ

)
= Tr

(
UUU N̄,MUUUT

N̄,MΛΛΛ
−2
)
=

N̄

∑
i=1

αi

λ2
i
,
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where αi ∈ [0,1] is the ith diagonal element of UUU N̄,MUUUT
N̄,M and ∑

N̄
i=1 αi = M because UUU N̄,M is an N̄×M

orthonormal matrix. Therefore, we have ∑
N̄
i=1

αi
λ2

i
≥ ∑

M
i=1

1
λ2

i
and the minimal value is achieved when

α1 = · · ·= αM = 1 and αM+1 = · · ·= αN̄ = 0 which implies UUU N̄,M =

[
UUUM

000

]
with UUUM ∈UM.

Case II: N̄ < M. We first note that h(ΦΦΦ)≥ 0 and it achieves its minimum when

ΦΦΦ ∈ S =
{

UUUT
M,N̄ΛΛΛ

−1UUUT
ΨΨΨ

: UUUT
M,N̄UUU N̄,M = IIIN̄

}
.

where UUUM,N̄ ∈UM,N̄ . For such ΦΦΦ, we have

‖ΦΦΦ‖2
F = Tr

(
ΦΦΦ

T
ΦΦΦ

)
= Tr

(
ΛΛΛ
−2
)
=

N̄

∑
i=1

1
λ2

i
,

which implies that all ΦΦΦ have the same energy.

We remark that [103, Theorem 2] also gives a set of optimal solutions to minimize g(ΦΦΦ) for

Rank(ΨΨΨ) = N̄ ≥ M, i.e., S =
{[

UUUM 000
]

ΛΛΛ
−1UUUT

ΨΨΨ
,UUUM ∈UM

}
coinciding with (6.9) because

[
UUUT

M

000

]
∈

UN̄,M. When Rank(ΨΨΨ) = N̄ ≥M (which is true for most of applications), (6.6) gives a set of optimal

solutions for (6.5) and implies that there may exist some degrees of freedom in choosing UUUM. However,

the following result expresses an equivalent performance of the sensing matrices with different UUUM.

Lemma 6.2.1. Compressive sensing systems with the same dictionary ΨΨΨ and different ΦΦΦ ∈W1 (which is

defined in (6.6)) have the same performance.

Proof. Suppose we have two compressive sensing systems with the same dictionary ΨΨΨ and the sensing

matrices ΦΦΦ =
[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
and ΦΦΦ =

[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
, respectively, where UUUM,UUUM ∈ UM. For

any xxx ∈ RN , the two CS systems obtain the measurements yyy = ΦΦΦxxx, yyy = ΦΦΦxxx, and respectively attempt to

recover xxx via

min
θ

‖yyy−ΦΦΦΨΨΨθθθ‖2, s.t. ‖θθθ‖0 ≤ K,

and

min
θ

‖yyy−ΦΦΦΨΨΨθθθ‖2, s.t. ‖θθθ‖0 ≤ K.

The proof is completed by noting that the above two equations have the same solution since

‖yyy−ΦΦΦΨΨΨθθθ‖2 = ‖UUUMUUUT
M (yyy−ΦΦΦΨΨΨθθθ)‖2 = ‖yyy−ΦΦΦΨΨΨθθθ‖2.

Lemma 6.2.1 implies that one can choose UUUM as an identity matrix which has the same performance

as other ΦΦΦ ∈W1 and then the solution for (6.5) becomes

ΦΦΦ , φ(ΨΨΨ) = ΛΛΛ
−1
M UUUΨΨΨ (:,1 : M)T , (6.10)

where ΛΛΛM = ΛΛΛ(1 : M,1 : M). Notice that ΛΛΛM is a diagonal matrix so the calculation of its inversion is

cheap. In effect, one SVD of the dictionary ΨΨΨ dominates the complexity in the sensing matrix updating

procedure. However, we only need the M largest singular values and the corresponding left orthogonal

matrices that the computation can be reduced further by using the power method. Compared with the
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methods shown in [107, 108] which need to perform eigenvalue decompositions or SVD many times, our

method saves significant computation.

We end this section by comparing (6.10) with gradient descent for solving (6.4) in terms of the

computational complexity, though our main purpose of using (6.10) is to avoid tuning the parameter λ in

(6.4). We note that although (6.4) is nonconvex, recent work on low-rank optimization [118] indicates

that gradient descent can converge to the global solution for a set of low-rank matrix optimization. The

convergence is also experimentally verified for (6.4) in [106], though there is no theoretical guarantee

about the convergence rate (i.e., how fast it converges to the global solution). Note that the gradient of

f (ΦΦΦ) is

∇ΦΦΦ f (ΦΦΦ) = 2λΦΦΦ−4ΦΦΦΨΨΨΨΨΨ
T +4ΦΦΦΨΨΨΨΨΨ

T
ΦΦΦ

T
ΦΦΦΨΨΨΨΨΨ

T .

Suppose that ΨΨΨΨΨΨ
T is precomputed, and then evaluating ∇ΦΦΦ f (ΦΦΦ) requires O(MN2) computations. Thus,

using gradient descent has at least O(MN2) computational complexity but we do not know how fast of

the convergence. From (6.9), our closed-form solution only needs to compute the largest M eigenvalues

and corresponding eigenvectors of ΨΨΨΨΨΨ
T requiring O(MN2) computational complexity in total. We also

note that in the dictionary updating procedure (see (6.18) in Section 6.3), it is required to compute

(IIIN + 1
γ
ΦΦΦ

T
ΦΦΦ)−1, which can be directly obtained through (6.10). If we use the gradient descent method to

update ΦΦΦ, we still need to compute such an inversion for updating the dictionary but this can be saved if

we use (6.10).

6.3 Online Learning SMSD Simultaneously

We consider the problem of jointly optimizing the sensing matrix and sparsifying dictionary (SMSD) on a

very large training dataset in this section. To reduce the complexity of learning a dictionary on a large

training data, we propose an online algorithm with the consideration of the projected sparse representation

error (SRE) ‖ΦΦΦeee‖2. Moreover, we develop an alternating-minimization based approach to consider the

corresponding joint optimization problem.

6.3.1 Online Joint SMSD Optimization

Given a set of P training signals XXX(:,k) = xxxk, k = 1,2, · · · ,P, our purpose is to jointly design the SMSD.

Classical dictionary learning attempts to minimize the SRE:

min
ΨΨΨ∈C ,ΘΘΘ

‖XXX−ΨΨΨΘΘΘ‖2
F , s.t. ‖θθθk‖0 ≤ K, ∀k, (6.11)

where ΘΘΘ(:,k) = θθθk, ∀k contains the sparse coefficient vectors and C is a constraint set to avoid trivial

solutions. Note that in CS, we obtain the linear measurements yyy as in (6.2) and then recover the signal

from yyy by first recovering the sparse coefficients θθθ and then obtain xxx through ΨΨΨθθθ. Therefore, a smaller

ΦΦΦeee is also preferred. This implies that besides reducing ‖XXX −ΨΨΨΘΘΘ‖2
F , given a sensing matrix ΦΦΦ, the

dictionary is also expected to reduce ‖ΦΦΦ(XXX−ΨΨΨΘΘΘ)‖2
F [107, 108, 119, 120]. So the sensing matrix and the

sparsifying dictionary (SMSD) are jointly optimized through [107, 108]

min
ΨΨΨ∈C ,ΘΘΘ,ΦΦΦ

γ‖XXX−ΨΨΨΘΘΘ‖2
F +‖ΦΦΦXXX−ΦΦΦΨΨΨΘΘΘ‖2

F

s.t. ΦΦΦ = φ(ΨΨΨ),‖θθθk‖0 ≤ K, ∀k,
(6.12)
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where φ(ΨΨΨ) is given in (6.10) and γ ∈ [0,1] is a trade-off parameter to balance these two terms. The value

of γ can be determined through grid search to receive the highest signal recovery accuracy on the testing

dataset.

Remark 6.1.

• We first note that the projected SRE ‖ΦΦΦ(XXX−ΨΨΨΘΘΘ)‖2
F also contains the sensing matrix ΦΦΦ and hence

this term should be considered in designing the sensing matrix. As discussed in Section 6.2, the

sensing matrix φ(ΨΨΨ) given in (6.10) already considers the projected SRE implying the advantage of

our proposed method for designing the sensing matrix compared with the ones used in [107, 108]

where the influence of ‖ΦΦΦ(XXX−ΨΨΨΘΘΘ)‖2
F is not considered.

• Compared with a separate approach that (usually) first learns the dictionary by (6.11) and then

designs the sensing matrix with the learned dictionary, jointly learning the SMSD through (6.12) is

expected to yield a better CS system, as the projected SRE is also minimized sequentially. We refer

the reader to [107, 108] for more discussions about the advantages of this joint approach.

Similarly to [107, 108], we use the alternating-minimization based method to solve (6.12). The main

idea is to alternatively update the sensing matrix (when the dictionary and sparse coefficients are fixed) by

(6.10) and then update the dictionary and the sparse coefficients (when the sensing matrix is fixed) by

solving
min

ΨΨΨ∈C ,ΘΘΘ
σ(ΨΨΨ,ΘΘΘ), γ‖XXX−ΨΨΨΘΘΘ‖2

F +‖YYY −ΦΦΦΨΨΨΘΘΘ‖2
F ,

s.t. ‖θθθk‖0 ≤ K, ∀k,
(6.13)

where YYY = ΦΦΦXXX . Since we are interested in learning a dictionary on a large training dataset, we suggest an

online algorithm in the next subsection to fit such a large dataset. The detailed steps for solving (6.12) are

summarized in Algorithm 6.1. Compared with the methods in [107, 108], Algorithm 6.1 is designed to

work on a large training dataset that it uses (6.10) for optimizing the sensing matrix with an online method

(in the next subsection), which is independent to the size of the training dataset, for learning the dictionary.

We note that the methods described in [107, 108] for solving (6.13) need to sweep all of the training data

at each iteration requiring high computation and large memory if the training dataset is large. Moreover,

the methods proposed in [107, 108] for updating the sensing matrix are iterative algorithms which require

many SVDs. The simulation results in the next section demonstrate the effectiveness of Algorithm 6.1.

Algorithm 6.1 Online Joint Optimization of SMSD
Input: Initial dictionary ΨΨΨ0 and maximal iterations Max Itersendic.
Output: The sensing matrix ΦΦΦ and the sparsifying dictionary ΨΨΨ.

1: for Iter = 1 to Max Itersendic do
2: Update the sensing matrix ΦΦΦIter with fixed ΨΨΨ = ΨΨΨIter−1 through (6.10).
3: Update the dictionary through (6.13) with Algorithm 6.2 for fixed ΦΦΦ = ΦΦΦIter.
4: end for

6.3.2 Online Dictionary Learning with Projected SRE

In this subsection, we present an online algorithm (Algorithm 6.2) to address (6.13) when the dataset is

large. The online method for (6.13) comprises two main stages: (i) the sparse coefficient vectors in ΘΘΘ
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are computed with a fixed ΨΨΨ; (ii) the sparsifying dictionary ΨΨΨ is updated with a fixed ΘΘΘ. Note that only

random sample of the training data is used at each iteration in our case which is different from the methods

shown in [107, 108]. The detailed steps of the online algorithm are summarized in Algorithm 6.2.

Algorithm 6.2 Online Dictionary Learning with Projected SRE
Input: Training data XXX ∈ RN×P, trade-off parameter γ, sensing matrix ΦΦΦ and initial dictionary ΨΨΨ0, batch

size η≥ 1, sparsity level K, forgetting parameter ρ, and maximal iterations Max Iterdic.
Output: Dictionary ΨΨΨ.

1: AAA0← 000, BBB0← 000, k← 1.
2: for t = 1 to Max Iterdic do
3: if k+η≤ P then
4: XXX t ← XXX(:,k : k+η−1), YYY t ←ΦΦΦXXX t .
5: k← k+η.
6: else
7: Shuffle XXX , k← 1.
8: XXX t ← XXX(:,k : k+η−1), YYY t ←ΦΦΦXXX t .
9: k← k+η.

10: end if
11: Sparse coding

ΘΘΘt ← argmin
Θ̃ΘΘt

∥∥∥∥[√γXXX t

YYY t

]
−
[√

γ ΨΨΨt−1
ΦΦΦΨΨΨt−1

]
Θ̃ΘΘt

∥∥∥∥2

F
,

s.t. ‖Θ̃ΘΘt(:,k)‖0 ≤ K,∀k.
(6.14)

12: AAAt ← (1− 1
t )

ρAAAt−1 +
1
η

ΘΘΘtΘΘΘ
T
t .

13: BBBt ← (1− 1
t )

ρBBBt−1 +
1
η

XXX tΘΘΘ
T
t .

14: Compute ΨΨΨt using Algorithm 6.3 with ΨΨΨt−1 as the initial value, so that

ΨΨΨt = arg min
ΨΨΨ∈C

σ̂t(ΨΨΨ).

15: end for

For simplicity, similarly to [107, 108], Algorithm 6.2 utilizes Orthogonal Matching Pursuit (OMP) for

the sparse coding problem (6.14) to update ΘΘΘ. At tth iteration of the dictionary updating procedure, we

suggest minimizing a surrogate function σt(ΨΨΨ) instead of considering (6.13) directly, i.e.,

min
ΨΨΨ

σt(ΨΨΨ),
1
2

t

∑
i=1

(
γ‖XXX i−ΨΨΨΘΘΘi‖2

F +‖YYY i−ΦΦΦΨΨΨΘΘΘi‖2
F
)
, (6.15)

which is equivalent to

min
ΨΨΨ

σ̂t(ΨΨΨ),
1
2

Tr
(

ΨΨΨ
T

ΩΩΩΨΨΨAAAt

)
−Tr

(
ΨΨΨ

T
ΩΩΩBBBt

)
, (6.16)

where AAAt = ∑
t
i=1 ΘΘΘiΘΘΘ

T
i , BBBt = ∑

t
i=1 XXX iΘΘΘ

T
i , ΩΩΩ = IIIN + 1

γ
ΦΦΦ

T
ΦΦΦ and Tr(·) denotes the trace operator. To solve

(6.16), we use the block-coordinate descent algorithm that updates the dictionary column by column. By

choosing block-coordinate descent, tuning learning rate, which is required by stochsatic gradient descent,

and calculating the inversion of any matrices, which is required by Newton-type methods for (6.16), are

avoided [121]. The gradient of (6.16) with respect to the jth column of ΨΨΨ is

∂σ̂t(ΨΨΨ)

∂ψψψ j
= ΨΨΨaaa j−bbb j +

1
γ

ΦΦΦ
T

ΦΦΦΨΨΨaaa j−
1
γ

ΦΦΦ
T

ΦΦΦbbb j, (6.17)
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where ψψψ j, aaa j and bbb j are the jth column of the matrices ΨΨΨ, AAAt and BBBt , respectively. The optimal ψψψ j is

obtained by enforcing (6.17) to be zero that ψψψ j should be updated as (6.19) while keeping the others fixed.

Following each column of the dictionary is normalized to have a unit `2 norm to avoid the trivial solution.

The detailed steps for solving (6.16) are summarized in Algorithm 6.3.

The matrices ΞΞΞ1 and ΞΞΞ2 in Algorithm 6.3 are equivalent to ΩΩΩ
−1, and ΩΩΩ

−1
ΦΦΦ

T
ΦΦΦ, respectively. Because

of the special structure of ΦΦΦ shown in (6.10), the matrices ΞΞΞ1 and ΞΞΞ2 can be evaluated simply by:

ΞΞΞ1 = UUUΨΨΨ

(γ−1ΛΛΛ
−2
M + IIIM

)−1
000

000 IIIN−M

UUUT
ΨΨΨ
,

ΞΞΞ2 = UUUΨΨΨ

(γ−1IIIM +ΛΛΛ
2
M

)−1
000

000 000

UUUT
ΨΨΨ
.

(6.18)

Although we have to compute the inversion of matrices in (6.18), the computational burden is essentially

low because the related matrices are diagonal. Following, we present several remarks which are useful in

practice to improve the performance of Algorithm 6.2.

Remark 6.2.

• When the training dataset has finite size (though it maybe very large), we suggest simulating the

random sampling of the data by cycling over a randomly permuted dataset, i.e., Lines 4 and 8 in

Algorithm 6.2.

• As introduced before, we sample one example from the training dataset instead of swapping all of

the data during each iteration. A typical strategy which can be used to accelerate the algorithm is to

sample a relatively large set of examples instead of only one example (η > 1). This corresponds

to a classical heuristic strategy in the stochastic gradient descent method [122] called mini-batch

which is also useful in our case. Another strategy to accelerate the algorithm is to add the history

into AAAt and BBBt as we have already shown in the formulation of AAAt and BBBt through the accumulation

of ΘΘΘt and XXX t . By assuming the dictionary will approach a stationary point after a sufficient number

of iterations, which is compatible with our following convergence analysis, the latest ΘΘΘt is more

important than the old one. Hence, a forgetting factor is added in AAAt and BBBt to de-emphasize the

older information in AAAt and BBBt . We set the forgetting factor to be (1− 1
t )

ρ with ρ > 1 in updating

AAAt and BBBt . The detailed formulation can be found at Lines 12 and 13 in Algorithm 6.2.

• In practical situations, the dictionary learning technique will lead to a dictionary whose columns

are never (or very seldom) used in sparse coding procedures, which happens typically with a poor

initialization. If we encounter such a phenomenon, one training example is randomly sampled to

replace such a column in this chapter.

6.3.3 Convergence Analysis

Although the logic in Algorithm 6.1 is relatively simple, it is nontrivial to prove the convergence of

Algorithm 6.3 because of its stochastic nature, the non-convexity and two different objective functions

((6.5) and (6.13)). In what follows, we provide the convergence analysis for each step in Algorithm 6.3.

Notice that Algorithm 6.3 contains two parts: optimizing the sensing matrix and learning the sparsifying
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Algorithm 6.3 Dictionary Update
Input: AAAt = [aaa1, · · · ,aaaL] , BBBt = [bbb1, · · · ,bbbL], ΞΞΞ1, ΞΞΞ2, ΨΨΨt−1 = [ψψψ1, · · · ,ψψψL].
Output: Dictionary ΨΨΨt .

1: repeat
2: for j = 1 to L do
3: Update the jth column of ΨΨΨt :

uuu j ← ΞΞΞ1

[
bbb j−ΨΨΨt−1aaa j
AAAt−1( j, j) +ψψψ j

]
+

ΞΞΞ2

[
bbb j

AAAt−1( j, j)γ +
1
γ
ψψψ j−

ΨΨΨt−1aaa j
AAAt−1( j, j)

]
.

ΨΨΨt(:, j) ← uuu j
‖uuu j‖2

.

(6.19)

4: end for
5: until convergence

dictionary to decrease the coherence of ΦΦΦΨΨΨ and to minimize the sparse representation error, respectively.

Separately, we claim both of these two steps are convergent. Our simulation result shown in the next

section also indicates the convergence of Algorithm 6.3. However, we leave the complete proof to future

work. For the sensing matrix updating procedure, we attain the minimum with one step because of the

closed-form solution. Following, we need to investigate whether the updating procedure for the dictionary

is also convergent. In fact, this holds by the following assumptions and propositions which are taken from

[109, 110].

Assumption 6.3.1.

1. The data admits a distribution with compact support K.

2. The quadratic surrogate functions σ̂t (defined in (6.16)) are strictly convex with lower-bounded

Hessians. Assume that the matrix AAAt is positive definite. In fact, this hypothesis is verified

experimentally after a few iterations of the algorithm with a proper initial dictionary. Specifically,

all columns will be chosen at least once in the sparse coding procedure during the iterations. The

Hessian matrix of σ̂t is ΩΩΩ⊗2AAAt where ⊗ represents the kronecker product. Clearly, the eigenvalues

of ΩΩΩ⊗2AAAt are the product of ΩΩΩ and AAAt’s eigenvalues. This indicates that the Hessian matrix of

σ̂t is positive definite because ΩΩΩ is a positive definite matrix which results in the fact that σ̂t is a

strictly convex function.

3. A particular sufficient condition for the uniqueness of the sparse coding solution is satisfied.

Considering our sparse coding mission (6.14), we see that it exactly shares the same structure as in

[109, 110]. So this assumption is also satisfied in our case.

Proposition 6.3.2. [110, Propostion 2] Assume the assumptions (1) to (3) are satisfied, then we have
1. σ̂t(ΨΨΨt) convergences almost surely;

2. σ(ΨΨΨt)− σ̂t(ΨΨΨt) converges almost surely to 0;

3. σ(ΨΨΨt) converges almost surely.

Proposition 6.3.3. [110, Propostion 3] Under assumptions (1) to (3), the distance between ΨΨΨt and the

set of stationary points of the dictionary learning problem converges almost surely to 0 when t tends to

infinity.
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Since Assumption 6.3.1 is held in our case, we conclude that the dictionary updating procedure in

our case is also convergent. This verifies what we argue at the second term in Remark 6.2, that the

dictionary will approach a stationary point after sufficient iterations. Though we have not rigorously

proved the convergence of Algorithm 6.1, the convergence of the two parts in Algorithm 6.1 implies that

the proposed algorithm at least is stable because both of these two steps (updating the sensing matrix

and the dictionary) are convergent and decrease the value of the corresponding objective functions. The

experiment in the following section also demonstrates this. We note that such a convergence analysis is

not discussed in [107, 108], where the sensing matrix is updated with an iterative algorithm rather than

as here with a closed-form solution. The only convergence analysis we are aware of jointly designing

sensing matrix and dictionary is in [119], where both the sensing matrix and the dictionary are optimized

in the same framework, but the training algorithm is not customized for large-scale applications. As for

the convergence of Algorithm 6.1, we defer this to future work.

6.4 Numerical Experiments

In this section we compare our method (denoted by CSAlg3) with the ones given in [107, 108] (denoted by

CSS−DCS and CSBL, respectively) which share the same framework with ours but are based on the batch

method (sweep the whole training data in each iteration) on natural images. The training and testing data

are extracted from the LabelMe database [123]. All of the experiments are carried out on a laptop with

Intel(R) i7-6500 CPU @ 2.5GHz and RAM 8G.

The signal reconstruction accuracy is evaluated in terms of Peak Signal to Noise Ratio (PSNR) given

by [99]:

ρpsnr , 10× log10

[
(2r−1)2

ρmse

]
dB

with r = 8 bits per pixel and ρmse , 1
N×P

P
∑

k=1
‖x̃xxk− xxxk‖2

2, where xxxk is the original signal, x̃xxk = ΨΨΨθ̃θθk stands

for the recovered signal and P is the number of patches in an image or testing data. The training and

testing data are obtained through the following method.

Training data A set of 8× 8 non-overlapping patches is obtained by randomly extracting 400 patches

from each of the images in the whole LabelMe training dataset, with each patch of 8×8 arranged as a

vector of size 64 resulting in totally 400×2920 = 1.168×106 training samples for training.

Testing data The testing data is extracted from the LabelMe testing dataset. Here, we randomly extract 15

patches from 400 images and each sample is an 8×8 non-overlapping patch. Finally, we obtain 6000 test

samples.

8×104 and 6×103 patches are randomly chosen from the 1.168×106 Training data for CSS−DCS

and CSBL, respectively, because these two methods cannot stand too large training patches. To show

the advantage of designing the SMSD on a large training dataset, the same 6×103 patches which are

prepared for CSBL are also used by CSS−DCS and called CSS−DCS− small. The parameters in these two

methods are chosen as recommended in the corresponding papers that M, L and K are set to 20, 256 and

4 in CSAlg3, respectively. The parameters γ, η, Max Iterdic, and Max Itersendic are set to 1
32 , 128, 1000,

and 10 in Algorithm 6.1. The initial sensing matrix and dictionary for [107, 108] are a random Gaussian

matrix and the DCT dictionary, respectively. The initial sparsifying dictionary in the proposed algorithm
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Figure 6.1: σpsnr of the four different CS systems on testing data.

Table 6.1: CPU time (Seconds) of the four different CS dystems.

CSS−DCS− small CSS−DCS CSBL CSAlg3

2.79×101 1.32×103 4.33×104 1.54×102

is randomly chosen from the training data and the corresponding sensing matrix is obtained through the

method shown in Section 6.2. According to our experiments, using the initial value in such a case yields a

slightly better performance compared with the initial settings suggested in [107, 108].

The signal recovery accuracy of the aforementioned methods on testing data and the corresponding

CPU time in seconds are shown in Table 6.1 and Figure 6.1, respectively. Evidently, we see that CSS−DCS

yields better performance in terms of σpsnr than CSS−DCS− small implying the benefit of working on a

large training dataset. Compared with CSS−DCS− small, CSBL has a higher ρpsnr which agrees with the

observation shown in [108], but such an advantage disappears if we enlarge the size of the training dataset;

see CSS−DCS. Moreover, it is hard to extend CSBL to large training datasets because it requires many SVDs

which can also be observed in Table 6.1. From Figure 6.1, we observe that CSS−DCS performs similarly to

CSBL, but requires less training time; see Table 6.1. Evidently, CSAlg3 yields the best performance in terms

of ρpsnr. Meantime, CSAlg3 needs a relatively less training time even the training dataset is largest than

others implying that Algorithm 6.1 belongs to a good choice, which takes both efficiency and effectiveness

into account simultaneously, for training the SMSD on a large training dataset.

Additionally, we investigate the performance of the four different CS systems mentioned in this

chapter on ten natural images. The Structural Similarity Index (SSIM) [124] is also involved in comparing

the recovered natural images obtained by other methods. In Table 6.2, we see that CSalg3 yields the

highest PSNR and SSIM. Compared with CSS−DCS− small, CSS−DCS has a higher PSNR and SSIM in all

of the ten test natural images that agrees with the argument in this chapter—one can benefit from using a

large-scale training dataset. Similarly to test on the testing data, we observe that CSBL works better than
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Table 6.2: Performance evaluation of four different CS systems shown in this chapter. (Left: PSNR, Right:
SSIM. The highest is marked in bold.)

CSS−DCS− small CSS−DCS CSBL CSAlg3

Lena 33.0566 0.9089 33.7859 0.9184 33.3059 0.9111 333444...666555555777 000...999222888111
Elaine 32.3990 0.8073 32.6903 0.8145 32.4076 0.8043 333333...111777555666 000...888222444444
Man 31.1978 0.8738 31.8509 0.8866 31.4686 0.8782 333222...555999444111 000...888999999999
Mandrill 23.4291 0.7598 23.8411 0.7823 23.8221 0.7746 222444...333777555333 000...888000000777
Peppers 28.9462 0.8877 29.6975 0.9005 29.4145 0.8925 333000...666888555999 000...999111666999
Boat 29.7350 0.8561 30.3488 0.8679 30.1027 0.8580 333111...222888555888 000...888888333777
House 31.5166 0.8842 32.0602 0.8985 32.0707 0.8956 333333...000111444666 000...999111555888
Cameraman 26.2240 0.8581 26.8272 0.8716 26.4545 0.8673 222777...444222555444 000...888888777777
Barbara 25.6148 0.8239 25.9153 0.8316 25.5165 0.8168 222666...000888333555 000...888333999333
Tank 30.7233 0.8252 30.8210 0.8369 31.1403 0.8361 333111...777888111888 000...888555777666
Averaged 29.2842 0.8485 29.7838 0.8609 29.5703 0.8534 333000...555000777888 000...888777555444

(a) ‘Lena’ (b) ‘Mandrill’

Figure 6.2: The original test images.

CSS−DCS− small but becomes worse than CSS−DCS. All of these imply the merit of training the sensing

matrix and the sparsifying dictionary on a large dataset and Algorithm 6.3 is a good choice for such a

mission. To examine the visual effect, the reconstruction of two natural images—‘Lena’ and ‘Mandril’ of

Figure 6.2—is shown in Figures 6.3 and 6.4.

Now, we experimentally study the convergence of Algorithm 6.3. In this part, we run Algorithm 6.2

again with sufficient iterations after calling Algorithm 6.1, to see whether the dictionary can be improved

further. Although we train ΦΦΦ and ΨΨΨ on training data, we prefer to see the objective value on the testing

data, on which we wish to test performance. Note that iterations here refers to Max Iterdic appearing in

Algorithm 6.2. From Figure 6.5, we see that even the testing error is not monotonically decreasing, it

is asymptotically decreasing meeting the feature of online algorithms because only part of the training

data is sampled to update the dictionary at each iteration. We can also observe that the value of ρpsnr on

testing data increases versus the number of iterations. From the sub-figure in Figure 6.5, we see that the

recovered PSNR increases dramatically after the 1000th iteration in which we update the sensing matrix

again. Moreover, we observe that the PSNR still increases as the iterations continued demonstrating

the significance of simultaneously optimizing the SMSD. In Figure 6.6, we display the variation of the

dictionary at each iteration and observe that there exist many oscillations which are caused by the fact

that we update the dictionary stochastically which only chooses part of training data at each iteration.
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(a) CSS−DCS− small (b) CSS−DCS (c) CSBL (d) CSAlg3

Figure 6.3: The recovered test image ‘Lena’.

(a) CSS−DCS− small (b) CSS−DCS (c) CSBL (d) CSAlg3

Figure 6.4: The recovered test image ‘Mandrill’.

However, the envelope of Figure 6.6(a) (see Figure 6.6(b)) implies the convergence of our algorithm

which is consistent with Proposition 6.3.3. Note that all of the observations agree with our statements in

Section 6.3 regarding the convergence analysis of Algorithm 6.1. However, the complete investigation of

the convergence analysis of Algorithm 6.1 is out of the scope in this chapter and is left to future work.

6.5 Conclusion

In this chapter, an efficient algorithm for jointly learning the SMSD on a large dataset is proposed. The

proposed algorithm optimizes the sensing matrix with a closed-form solution and learns a sparsifying

dictionary with a stochastic method on a large training dataset. Our experiment results show that training

the SMSD on a large dataset yields better performance and the proposed method which considers the

efficiency and effectiveness simultaneously is a suitable choice for such a task.

One of the possible directions for future research is to accelerate the proposed method. Combining

the Sequential Subspace Optimization (SESOP) with the proposed algorithm may be one of the possible

methods to boost efficiency [113].
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Figure 6.5: Objective value σ(ΨΨΨt ,ΘΘΘt) and σpsnr on testing data using Algorithm 6.3.
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Figure 6.6: (a): The difference between dictionaries of consecutive iterations; (b): The envelope of the
differences between consecutive dictionaries.
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Chapter 7

Optimized Structured Sparse Sensing
Matrices for Compressive Sensing

In this chapter, we describe our work on designing structured sparse sensing matrices for compressive

sensing. This chapter is based on the following published paper:

• Tao Hong, Xiao Li, Zhihui Zhu, and Qiuwei Li, Optimized Structured Sparse Sensing Matrices for

Compressive Sensing, Signal Processing, vol. 159, pp. 119-129, Jun. 2019.

The introduction of compressive sensing is omitted in this chapter because it already appears in Chapter 6.

Moreover, the notation used in Chapter 6 is also adapted in this chapter, e.g., ΦΦΦ–sensing matrix, ΨΨΨ–

dictionary, θθθ–sparse coefficients, eee–sparse representation error, ‖ · ‖0–the number of non-zeros, and

MATLAB notation, etc.

7.1 Introduction

In compressive sensing (CS), the sensing matrix ΦΦΦ ∈ RM×N (M� N) is used for recovering xxx ∈ RN

from its low dimensional measurements yyy = ΦΦΦxxx. It has been shown that if the equivalent dictionary

ΦΦΦΨΨΨ∈RM×L satisfies the restricted isometry property (RIP), the sparse vector θθθ∈RL as shown in (6.1) can

be exactly recovered from yyy [125, 126]. Although random matrices satisfy the RIP with high probability

[125], verifying that a general matrix satisfies the RIP is NP-hard [127]. Alternatively, mutual coherence,

another measure of the property of sensing matrices which is much easier to verify, has been introduced

in practice to quantify and optimize sensing matrices [102, 107, 128, 103, 105, 104, 108, 114, 106, 129,

120]. Structured sensing matrices (e.g., Toeplitz matrices and sparse matrices) have been proposed

[130, 131, 132, 133, 134, 135] to efficiently acquire signals of interest in hardware (such as digital signal

processors and FPGA) [136, 137], or applications like electrocardiography (ECG) compression [138]

and data streams computing [139]. However, a random sparse sensing matrix is less competitive than

an optimized one in terms of the signal recovery accuracy. In this chapter, we consider the design of a

structured sparse sensing matrix that can efficiently acquire signals and yields performance that is similar

to that of dense matrices. Our main contributions in this chapter are summarized as follows:

(1) We propose a framework to design a structured sparse sensing matrix by reducing the mutual

coherence (defined in (7.1)) of the equivalent dictionary ΦΦΦΨΨΨ. As shown in Figure 7.1(b), the
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(a) (b)

Figure 7.1: (a): A random Gaussian matrix; (b): A structured sparse sensing matrix consisting of a sparse
sensing matrix and a base sensing matrix.

structured sparse sensing matrix consists of ΦΦΦ = Φ̄ΦΦAAA where Φ̄ΦΦ ∈ RM×N is a row-wise sparse matrix

and AAA ∈ RN×N refers to the base sensing matrix such that AAAxxx can be implemented with linear

complexity. The choice of AAA depends on the features of signals of interest, e.g., one can choose a DCT

matrix for natural images with a learned ΨΨΨ [17]. Moreover, one may simply set AAA = IIIN resulting in a

sparse sensing matrix.
(2) We provide an alternating minimization algorithm to address the nonconvex nonsmooth optimization

problem (see (7.10)). Despite the nonconvexity and nonsmoothness, we perform a rigorous conver-

gence analysis to show that the sequence of iterates generated by the proposed algorithm with random

initialization converges to a critical point.
(3) Experiments on natural images show that the structured sparse sensing matrix obtained—with or

without AAA—outperforms a random dense sensing matrix. It is interesting to note that by setting

AAA = DCT, the optimized structured sparse sensing matrix performs, in terms of signal recovery

accuracy, almost identically to the optimized dense sensing matrix; see Figure 7.8.

The outline of this chapter is as follows. In Section 7.2, we review the previous approaches for

optimizing robust sensing matrices. A new framework for designing the structured sparse sensing matrix

is proposed in Section 7.3 with the consideration of minimizing the mutual coherence of the equivalent

dictionary and the SREs. Moreover, we provide an alternating minimization algorithm to solve the

optimization problem, along with a rigorous convergence analysis, in Section 7.4. We examine the

performance of the resulting structured sparse sensing matrix on both synthetic data and real images in

Section 7.5. Conclusions are given in Section 7.6.

7.2 Preliminaries

In this section, we briefly review the definition of mutual coherence in CS and introduce the previous

approaches for designing robust sensing matrices.

7.2.1 Mutual Coherence

The mutual coherence of QQQ ∈ RM×L is defined as

µ(QQQ), max
1≤m6=n≤L

|qqqT
m qqqn|

‖qqqm‖2‖qqqn‖2
≥ µ ,

√
L−M

M(L−1)
, (7.1)
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where qqqm is the mth column of QQQ, µ is the lower bound of µ(QQQ) called Welch Bound [140], and ‖ · ‖2

denotes the `2 vector norm. We refer the reader to [99, Section 5.2.3] for a discussion on the connection

between the mutual coherence and the RIP.

Given the measurements yyy = ΦΦΦxxx, one can recover xxx by solving

θ̂θθ = arg min
θθθ∈RL

‖yyy−ΦΦΦΨΨΨθθθ‖2
2, s.t. ‖θθθ‖0 ≤ K. (7.2)

and then x̂xx = ΨΨΨ θ̂θθ. Note that (7.2) can be exactly or approximately solved by convex relaxation meth-

ods [126, 141, 142] (e.g., basis pursuit) or greedy algorithms [143] (e.g., the orthogonal marching pursuit

(OMP)). Moreover, in [143], Tropp showed that OMP can stably find θθθ and hence obtain an exact

estimation of xxx if

K <
1
2

[
1+

1
µ(ΦΦΦΨΨΨ)

]
, (7.3)

which acts as a crucial criterion for optimizing sensing matrices.

7.2.2 Optimized Robust Sensing Matrix

In light of (7.3), many efforts [115, 102, 128, 103] have been devoted to design the sensing matrix by

minimizing the mutual coherence µ(ΦΦΦΨΨΨ) as discussed in chapter 6. We note that most of the previous

studies assume eee = 000 (cf. (6.1)), but it was soon realized that such an optimized sensing matrix lacks

robustness with respect to eee 6= 000 [104]. For practical signals of interest, eee is never nil even for a learned

dictionary [17], and therefore we need to design a robust sensing matrix for eee 6= 000.

Denote by Gξ the set of relaxed equiangular tight frame (ETF) Gram matrices:

Gξ =

{
GGG ∈ SL×L : GGG(m,m) = 1,∀m max

m6=n,∀m,n
|GGG(m,n)| ≤ ξ

}
, (7.4)

where ξ ∈ [0,1) is a prescribed parameter which can be set to 0 or µ [128, 103, 104, 114] and SL×L is a

set of real L×L symmetric matrices. Denote by XXX ∈ RN×J a set of training data. We use ΘΘΘ to denote the

sparse coefficients of XXX under ΨΨΨ: XXX = ΨΨΨΘΘΘ+EEE where ‖ΘΘΘ(:,n)‖0 ≤ K,∀n. In [104, 114], the authors used

the SRE matrix EEE , XXX−ΨΨΨΘΘΘ as the regularization that the robust sensing matrix is obtained by solving

the following problem:

min
ΦΦΦ,GGG∈Gξ

∥∥∥GGG−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ

∥∥∥2

F
+λ‖ΦΦΦEEE‖2

F , (7.5)

where the first term of (7.5) is used to control the average mutual coherence of the equivalent dictionary

and λ ≥ 0 is the trade-off parameter to balance these two terms. As discussed in Chapter 6, one can

discard EEE [106] and solve the following problem instead of (7.5):

min
ΦΦΦ,GGG∈Gξ

∥∥∥GGG−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ

∥∥∥2

F
+λ‖ΦΦΦ‖2

F , (7.6)

as we indeed do in this chapter.
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7.3 Optimized Structured Sparse Sensing Matrix

As mentioned above, in applications like ECG compression [138], data streams computing [139], and

hardware implementation [136], the classical CS system with a dense sensing matrix ΦΦΦ is inefficient.

Indeed, applying a dense sensing matrix ΦΦΦ ∈ RM×N to acquire xxx ∈ RN has O(MN) computational

complexity, and in practice we will acquire signals many times so we need better efficiency.

In this chapter, we suggest imposing certain structure into the sensing matrix ΦΦΦ for improving the

efficiency of acquiring signals. To this end, the following structure is adopted in this chapter:

ΦΦΦ = Φ̄ΦΦAAA, (7.7)

where Φ̄ΦΦ∈RM×N is a row-wise sparse matrix and AAA∈RN×N denotes the base matrix. To achieve reduction

of acquisition complexity, the base sensing matrix AAA should be either the identity matrix or some other

matrix for which AAAxxx can be computed with low (preferably linear) complexity. In practice, the choice of AAA

depends on the features of signals of interest, e.g., one can choose a DCT matrix for natural images [144].

Rewrite (7.7) as

ΦΦΦ
T = AAAT

Φ̄ΦΦ
T
, (7.8)

and consider Φ̄ΦΦ
T as the sparse representation of ΦΦΦ

T in AAAT . Thus, similarly to (6.1), we also call ΦΦΦ a

sparse sensing matrix in AAA. Note that the structure of (7.8) also appears in the double-sparsity dictionary

learning task [144], the dictionary ΨΨΨ = AAAΨ̄ΨΨ with Ψ̄ΨΨ column-wise sparse.

Adopting (7.6), we solve the following problem to find Φ̄ΦΦ:

{Φ̃ΦΦ, G̃GG}=arg min
Φ̄ΦΦ,GGG∈Gξ

||GGG−ΨΨΨ
T AAAT

Φ̄ΦΦ
T

Φ̄ΦΦAAAΨΨΨ||2F +λ‖Φ̄ΦΦAAA‖2
F ,

s.t. ‖Φ̄ΦΦ(m, :)‖0 ≤ κ, ∀ m, (7.9)

where κ denotes the number of non-zeros in each row of the sensing matrix. For AAA = IIIN , the computational

complexity of Φ̄ΦΦxxx = Φ̃ΦΦxxx is O(Mκ) which is the same as the one shown in [132]. By choosing a base

matrix with fast implementation of AAAxxx, we only slightly increase the complexity, e.g.,if AAA = DCT, AAAxxx

only requires O(N logN). Moreover, in some cases, AAAxxx can be implemented with O(N), e.g., if AAA is

an orthogonal matrix and then AAA can be decomposed into a series of Givens rotation matrices [145].

Compared with a dense sensing matrix which requires O(MN) operations to acquire signals, our structure

Φ̄ΦΦAAA saves significant computation, especially for large N and N� κ. In Figure 7.2, we show the difference

between O(MN) and O(N logN +Mκ) with varying κ and N.

7.4 Alternating Gradient Projection Algorithm for Designing Structured
Sensing Matrix

Besides the fact that ΦΦΦ is parameterized by Φ̄ΦΦAAA, (7.9) differs from (7.6) in that the former has a sparse

constraint on the rows of Φ̄ΦΦ such that (7.9) becomes highly nonconvex. In this section, we suggest using

an alternating projected gradient method to address (7.9) with a rigorous convergence analysis.
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Figure 7.2: Comparison of O(MN) (black line) and O(N logN +Mκ) (other three lines, refering to
different κ) with M = 10logN.

Assume AAA is not null and rewrite (7.9) as

min
ΦΦΦ,GGG

f (ΦΦΦ,GGG), ||GGG− Ψ̄ΨΨ
T

ΦΦΦ
T

ΦΦΦΨ̄ΨΨ||2F +λ‖ΦΦΦ‖2
F ,

s.t. ‖ΦΦΦ(m, :)‖0 ≤ κ, ∀ m, GGG ∈ Gξ,

(7.10)

where Ψ̄ΨΨ = AAAΨΨΨ. Without any confusion, we will use ΦΦΦ instead of Φ̄ΦΦ in the following analysis and

distinguish between them only if it is not clear from the context. Denote by PGξ
: RL×L → RL×L an

orthogonal projection operator on the set Gξ such that

(
PGξ

(GGG)
)
(m,n) =

{
1, m = n,

sgn(GGG(m,n))min(|GGG(m,n)|,ξ), m 6= n,

where sgn(·) is the sign function. For fixed ΦΦΦ, the solution of minGGG∈Gξ
f (ΦΦΦ,GGG) is given by

ĜGG = PGξ
(Ψ̄ΨΨ

T
ΦΦΦ

T
ΦΦΦΨ̄ΨΨ). (7.11)

Now we consider (7.10) with fixed GGG, i.e.,

min
ΦΦΦ

f (ΦΦΦ,GGG), s.t. ‖ΦΦΦ(m, :)‖0 ≤ κ, ∀ m. (7.12)

Without the sparsity constraint, recent works [118, 146] showed that any gradient based algorithms can

provably solve minΦΦΦ f (ΦΦΦ,GGG). To address the constraint, we suggest using projected gradient descent

(PGD). Denote by Sκ the set of matrices that has at most κ non-zeros in each row,

Sκ ,
{

ZZZ ∈ RM×N : ‖ZZZ(m, :)‖0 ≤ κ, ∀ m
}
,

and PSκ
: RM×N → RM×N an orthogonal project operator on the set Sκ that chooses the largest κ absolute

values of each row. Since Sκ is nonconvex, PSκ
may yield multiple solutions and we randomly choose one
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of them in practice. At the kth step, PDG runs

ΦΦΦk = PSκ
(ΦΦΦk−1−η∇ΦΦΦ f (ΦΦΦk−1,GGGk−1)) , (7.13)

where ∇ΦΦΦ f (ΦΦΦk−1,GGGk−1) is the gradient of f (ΦΦΦk−1,GGGk−1) with respect to ΦΦΦ for ΦΦΦk−1 and η is the fixed

stepsize.

The corresponding alternating gradient projection method for (7.10) is summarized in Algorithm 7.1.

We note that the use of alternating minimization algorithms for designing sensing matrix can also be

found in [102, 107, 128, 103, 104, 114] but the convergence of these algorithms is usually neither ensured

nor seriously considered. Following, we provide a rigorous convergence analysis of Algorithm 7.1.

Algorithm 7.1 Algorithm for Designing Sparse Sensing Matrix
Input: Initial values ΦΦΦ0 and GGG0, maximal iterations Max Iter, fixed stepsize η, and sparsity level κ.
Output: Sparse sensing matrix ΦΦΦMax Iter.

1: k← 1.
2: while k ≤Max Iter do
3: ΦΦΦk← PSκ

(ΦΦΦk−1−η∇ΦΦΦ f (ΦΦΦk−1,GGGk−1)).
4: GGGk← PGξ

(Ψ̄ΨΨ
T

ΦΦΦ
T
k ΦΦΦkΨ̄ΨΨ).

5: k← k+1.
6: end while

7.4.1 Convergence Analysis

To analyse the convergence of Algorithm 7.1, we rewrite (7.10) in the following equivalent unconstrained

form

min
ΦΦΦ,GGG

ρ(ΦΦΦ,GGG) := f (ΦΦΦ,GGG)+δSκ
(ΦΦΦ)+δGξ

(GGG), (7.14)

where δS (QQQ) =

0, QQQ ∈ S ,

∞, QQQ /∈ S
. Denote by Lρ0 a sublevel set of ρ(ΦΦΦ,GGG),

Lρ0 =
{
(ΦΦΦ,GGG) : ρ(ΦΦΦ,GGG)≤ ρ0,GGG ∈ Gξ,ΦΦΦ ∈ Sκ

}
,

where ρ0 = ρ(ΦΦΦ0,GGG0) with ΦΦΦ0,GGG0 the initial values of Algorithm 7.1. In the following proof, we will see

that

ρ(ΦΦΦk,GGGk)≤ ρ(ΦΦΦk,GGGk−1)≤ ρ(ΦΦΦk−1,GGGk−1),

after calling Lines 3 and 4 in Algorithm 7.1, that (ΦΦΦk,GGGk) ∈ Lρ0 , ∀k and ‖GGG‖F , ‖ΦΦΦ‖F are finite because

GGG ∈Gξ and ρ(ΦΦΦ,ΨΨΨ)→∞ when ‖ΦΦΦ‖F →∞. With these and the differentiability of f (ΦΦΦ,GGG), we have that

both ∇ΦΦΦ f (ΦΦΦ,GGG) and ∇GGG f (ΦΦΦ,GGG) are Lipshitz continuous:

‖∇ΦΦΦ f (ΦΦΦ,GGG)−∇ΦΦΦ f (ΦΦΦ′,GGG)‖F ≤ Lc‖ΦΦΦ−ΦΦΦ
′‖F ,

‖∇GGG f (ΦΦΦ,GGG)−∇GGG f (ΦΦΦ,GGG′)‖F ≤ Lc‖GGG−GGG′‖F ,
(7.15)
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for all (ΦΦΦ,GGG),(ΦΦΦ′,GGG),(ΦΦΦ,GGG′) ∈ Lρ0 where Lc > 0 is the Lipschitz constant. A direct consequence of the

Lipschitz continuity is as follows.

Lemma 7.4.1. For any L≥ Lc, denote by

hL(ΦΦΦ,ΦΦΦ′,GGG), f (ΦΦΦ′,GGG)+ 〈∇ΦΦΦ f (ΦΦΦ′,GGG),ΦΦΦ−ΦΦΦ
′〉

+
L
2
‖ΦΦΦ−ΦΦΦ

′‖2
F .

Then, f (ΦΦΦ,GGG)≤ hL(ΦΦΦ,ΦΦΦ′,GGG) for all (ΦΦΦ,GGG),(ΦΦΦ′,GGG) ∈ Lρ0 .

Proof. Denote by υ(t) = f (ΦΦΦ′+ t(ΦΦΦ−ΦΦΦ
′),GGG). Evidently, υ(0) = f (ΦΦΦ′,GGG), υ(1) = f (ΦΦΦ,GGG) and then

we have

υ(1)−υ(0) = f (ΦΦΦ,GGG)− f (ΦΦΦ′,GGG) =
∫ 1

0
υ
′(t)dt

=
∫ 1

0
〈∇ΦΦΦ f (ΦΦΦ′+ t(ΦΦΦ−ΦΦΦ

′),GGG),ΦΦΦ−ΦΦΦ
′〉dt

=
∫ 1

0
〈∇ΦΦΦ f (ΦΦΦ′+ t(ΦΦΦ−ΦΦΦ

′),GGG)−∇ΦΦΦ f (ΦΦΦ′,GGG),ΦΦΦ−ΦΦΦ
′〉dt

+ 〈∇ΦΦΦ f (ΦΦΦ′,GGG),ΦΦΦ−ΦΦΦ
′〉

(∗)
≤

∫ 1

0
‖∇ΦΦΦ f (ΦΦΦ′+ t(ΦΦΦ−ΦΦΦ

′),GGG)−∇ΦΦΦ f (ΦΦΦ′,GGG)‖Fdt

· ‖ΦΦΦ−ΦΦΦ
′‖F + 〈∇ΦΦΦ f (ΦΦΦ′,GGG),ΦΦΦ−ΦΦΦ

′〉
(7.15)
≤ L‖ΦΦΦ−ΦΦΦ

′‖2
F

∫ 1

0
tdt + 〈∇ΦΦΦ f (ΦΦΦ′,GGG),ΦΦΦ−ΦΦΦ

′〉

=
L
2
‖ΦΦΦ−ΦΦΦ

′‖2
F + 〈∇ΦΦΦ f (ΦΦΦ′,GGG),ΦΦΦ−ΦΦΦ

′〉,

where (∗) follows from the Cauchy–Schwarz inequality.

With Lemma 7.4.1, we can establish the following theorem stating that the sequence (ΦΦΦk,GGGk) generated

by Algorithm 7.1 is bounded and the limit point of any convergent subsequence is a stationary point of

ρ(ΦΦΦ,GGG).

Theorem 7.1 (Subsequence convergence). Denote by {WWW k = (ΦΦΦk,GGGk)}k≥0 the sequence generated by

Algorithm 7.1 with fixed stepsize η < 1
Lc

. Then the sequence {WWW k} is bounded and obeys the following

properties:

(P1) sufficient decrease:

ρ(ΦΦΦk,GGGk)−ρ(ΦΦΦk+1,GGGk) ≥
1
η
−Lc

2 ‖ΦΦΦk−ΦΦΦk+1‖2
F ,

ρ(ΦΦΦk+1,GGGk)−ρ(ΦΦΦk+1,GGGk+1) ≥ ‖GGGk−GGGk+1‖2
F .

(7.16)

(P2) the sequence {ρ(ΦΦΦk,GGGk)}k≥0 is convergent.

(P3) convergence of WWW k:

lim
k→∞

‖WWW k+1−WWW k‖F = 0. (7.17)
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(P4) for any convergent subsequence {WWW k′}, its limit point WWW is a stationary point of ρ(WWW ) and

lim
k′→∞

ρ(WWW k′) = lim
k→∞

ρ(WWW k) = ρ(WWW ). (7.18)

Proof. We first define the subdifferential for a general lower semicontinuous function which will be used

in the following proof.

Definition 7.4.2 (Subdifferentials [147]). Let σ : Rd → (−∞,∞] be a proper and lower semicontinuous

function, whose domain is defined as

domσ :=
{

uuu ∈ Rd : σ(uuu)< ∞

}
.

The Fréchet subdifferential of σ at uuu is defined by

∂σF(uuu) =
{

zzz : lim
vvv→uuu

inf
σ(vvv)−σ(uuu)−〈zzz,vvv−uuu〉

‖uuu− vvv‖
≥ 0
}
,

for any uuu ∈ domσ and ∂Fσ(uuu) = /0 if uuu /∈ domσ. The subdifferential of σ at uuu ∈ domσ is defined by

∂σ(uuu) = {zzz : ∃uuuk→ uuu,σ(uuuk)→ σ(uuu),zzzk ∈ ∂Fσ(uuuk)→ zzz} .

We call uuu a critical or stationary point if ∂σ(uuu) = 000. Now we prove the four arguments of Theorem 7.1

separately.

Show (P1): Since ΦΦΦk ∈ Sκ and GGGk ∈Gξ, ∀k ∈N, we have ρ(ΦΦΦk,GGG`) = f (ΦΦΦk,GGG`), ∀k, ` ∈N and then

ρ(ΦΦΦk+1,GGGk)−ρ(ΦΦΦk+1,GGGk+1)

= ‖GGGk−BBBk+1‖2
F −‖GGGk+1−BBBk+1‖2

F

= ‖GGGk−PGξ
(BBBk+1)+PGξ

(BBBk+1)−BBBk+1‖2
F −‖PGξ

(BBBk+1)−BBBk+1‖2
F

= ‖GGGk−PGξ
(BBBk+1)‖2

F +2
〈

GGGk−PGξ
(BBBk+1),PGξ

(BBBk+1)−BBBk+1

〉
︸ ︷︷ ︸

≥0 second projection theorem [54]

≥ ‖GGGk−GGGk+1‖2
F .

where BBBk+1 = Ψ̄ΨΨ
T

ΦΦΦ
T
k+1ΦΦΦk+1Ψ̄ΨΨ. From (7.13), we have

ΦΦΦk+1 ∈ PSκ
(ΦΦΦk−η∇ΦΦΦ f (ΦΦΦk,GGGk))

= argmin
ZZZ∈Sκ

‖ZZZ− (ΦΦΦk−η∇ΦΦΦ f (ΦΦΦk,GGGk))‖2
F

∈ argmin
ZZZ∈Sκ

h1/η(ZZZ,ΦΦΦk,GGGk).

(7.19)

implying

h1/η(ΦΦΦk+1,ΦΦΦk,GGGk)≤ h1/η(ΦΦΦk,ΦΦΦk,GGGk) (7.20)

= f (ΦΦΦk,GGGk). (7.21)
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In view of Lemma 7.4.1, we get

f (ΦΦΦk,GGGk)− f (ΦΦΦk+1,GGGk)

Lemma 7.4.1
≥ f (ΦΦΦk,GGGk)−hLc(ΦΦΦk+1,ΦΦΦk,GGGk)

(7.21)
≥ h1/η(ΦΦΦk+1,ΦΦΦk,GGGk)−hLc(ΦΦΦk+1,ΦΦΦk,GGGk)

=

1
η
−Lc

2
‖ΦΦΦk−ΦΦΦk+1‖2

F ,

yielding the desired result.

Show (P2): From (P1), we have

ρ0 ≥ ρ(ΦΦΦ1,GGG0)≥ ρ(ΦΦΦ1,GGG1)≥ ·· ·ρ(ΦΦΦk,GGGk)

≥ ρ(ΦΦΦk+1,GGGk)≥ ρ(ΦΦΦk+1,GGGk+1)≥ ·· · ≥ 0,

implying the convergence of sequence {ρ(ΦΦΦk,GGGk)}k≥0.

Show (P3): Summing (7.16) from k = 1 to ∞, we get

∞

∑
k=0

1
η
−Lc

2

(
‖ΦΦΦk−ΦΦΦ

k+1‖2
F

)
+‖GGGk−GGGk+1‖2

F

≤ ρ0− lim
k→∞

ρ(ΦΦΦk,GGGk)≤ ρ0,

suggesting the convergence of the series {∑n
k=0 ‖ΦΦΦ

k−ΦΦΦ
k+1‖2

F +‖GGG
k−GGGk+1‖2

F}n. Since ‖ΦΦΦk−ΦΦΦ
k+1‖2

F ≥
0 and ‖GGGk−GGGk+1‖2

F ≥ 0, (7.17) is derived.

Show (P4): Rewrite (7.19) as

ΦΦΦk+1 ∈ arg min
ΦΦΦ∈RM×N

h 1
η

(ΦΦΦ,ΦΦΦk,GGGk)+δSκ
(ΦΦΦ). (7.22)

Since ΦΦΦk+1 is the optimal solution of (7.22), we get

〈∇ΦΦΦ f (ΦΦΦk,GGGk),ΦΦΦk+1−ΦΦΦk〉+
η

2
‖ΦΦΦk+1−ΦΦΦk‖2

F +δSκ
(ΦΦΦk+1)

≤ 〈∇ΦΦΦ f (ΦΦΦk,GGGk),ΦΦΦ−ΦΦΦk〉+
η

2
‖ΦΦΦ−ΦΦΦk‖2

F +δSκ
(ΦΦΦ),

where ΦΦΦ = ΦΦΦ is the limit of a convergent subsequence {ΦΦΦk′}k′ . By setting k+1→ k′ and k→ k′−1 for

the above equation and taking the limit of the subsequence {ΦΦΦk′}k′ , we further get

lim sup
k′→∞

δSκ
(ΦΦΦk′)−δSκ

(ΦΦΦ)

≤ lim sup
k′→∞

〈∇ΦΦΦ f (ΦΦΦk′−1,GGGk′−1),ΦΦΦ−ΦΦΦk′〉

+
η

2
‖ΦΦΦ−ΦΦΦk′−1‖2

F −
η

2
‖ΦΦΦk′−ΦΦΦk′−1‖2

F

= 0,

(7.23)

where the equality follows from the facts that (i) limsupk′→∞〈∇ΦΦΦ f (ΦΦΦk′−1,GGGk′−1),ΦΦΦ−ΦΦΦk′〉= 0 (the scalar

101



product is continuous); (ii) ‖ΦΦΦk′ −ΦΦΦk′−1‖2
F = 0 ((7.17)); (iii) ‖ΦΦΦ−ΦΦΦk′−1‖2

F = 0 (0 ≤ limk′→∞ ‖ΦΦΦ−
ΦΦΦk′−1‖F = limk′→∞ ‖ΦΦΦ−ΦΦΦk′ +ΦΦΦk′ −ΦΦΦk′−1‖F ≤ limk′→∞ ‖ΦΦΦ−ΦΦΦk′‖F +‖ΦΦΦk′ −ΦΦΦk′−1‖F = 0). By using

δSκ
(ΦΦΦ)≤ liminfk′→∞ δSκ

(ΦΦΦk′) (δSκ
(ΦΦΦ) is lower semi-continuous) and (7.23), we get

lim sup
k′→∞

δSκ
(ΦΦΦk′)≤ δSκ

(ΦΦΦ)≤ lim inf
k′→∞

δSκ
(ΦΦΦk′),

which, together with the fact that liminfk′→∞ δSκ
(ΦΦΦk′)≤ limsupk′→∞ δSκ

(ΦΦΦk′), yields δSκ
(ΦΦΦ)= liminfk′→∞ δSκ

(ΦΦΦk′)=

limsupk′→∞ δSκ
(ΦΦΦk′), and hence limk′→∞ δSκ

(ΦΦΦk′) = δSκ
(ΦΦΦ).

Since Gξ is a compact set and GGGk′ ∈ Gξ, ∀ k′ ∈ N, we know the limit point GGG ∈ Gξ. With these, we

can get limk′→∞ ρ(ΦΦΦk′ ,GGGk′) = limk′→∞ f (ΦΦΦk′ ,GGGk′)+δSκ
(ΦΦΦk′)+δGξ

(GGGk′) = ρ(ΦΦΦ,GGG). Following, we prove

WWW = (ΦΦΦ,GGG) is a stationary point of ρ(ΦΦΦ,GGG) which is equivalent to showing (000,000) ∈ ∂ρ(ΦΦΦ,GGG). Note that

one can obtain a stronger result that (000,000) ∈ limk→∞ ∂ρ(ΦΦΦk,GGGk).

Note that the optimality condition of (7.22) reads (by setting k← k−1) [148]

∇ΦΦΦ f (ΦΦΦk−1,GGGk−1)+
1
η
(ΦΦΦk−ΦΦΦk−1)+VVV k = 000,

where VVV k ∈ ∂δSκ
(ΦΦΦk). With this equality, we get

∇ΦΦΦ f (WWW k)−∇ΦΦΦ f (WWW k−1)−
1
η
(ΦΦΦk−ΦΦΦk−1)︸ ︷︷ ︸

DDDΦΦΦk

∈ ∂ΦΦΦρ(WWW k). (7.24)

Note that GGGk is the solution of

min
GGG∈RL×L

ρ(ΦΦΦk,GGG), (7.25)

and the optimality condition of (7.25) reads

000 = ∇GGG f (ΦΦΦk,GGGk)+UUUk︸ ︷︷ ︸
DDDGGGk

∈ ∂GGGρ(WWW k), (7.26)

where UUUk ∈ ∂δGξ
(GGGk). With (7.24) and (7.26), we have

‖(DDDΦΦΦk ,DDDGGGk)‖F = ‖DDDΦΦΦk‖F

= ‖∇ΦΦΦ f (WWW k)−∇ΦΦΦ f (WWW k−1)−
1
η
(ΦΦΦk−ΦΦΦk−1)‖F

≤ ‖∇ΦΦΦ f (WWW k)−∇ΦΦΦ f (ΦΦΦk,GGGk−1)‖

+‖∇ΦΦΦ f (ΦΦΦk,GGGk−1)−∇ΦΦΦ f (WWW k−1)‖

+
1
η
‖ΦΦΦk−ΦΦΦk−1‖F

(7.15)
≤ Lc‖GGGk−GGGk−1‖F +(Lc +

1
η
)‖ΦΦΦk−ΦΦΦk−1‖F

≤ (2Lc +
1
η
)‖WWW k−WWW k−1‖F . (7.27)
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Combining (7.27) with (7.17), we get

lim
k→∞

(DDDΦΦΦk ,DDDGGGk) = (000,000),

and thus (000,000) ∈ limk→∞ ∂ρ(ΦΦΦk,GGGk) so that any convergent subsequence of {WWW k}k converges to a station-

ary point of (7.14). The statement limk→∞ ρ(WWW k) = ρ(WWW ) directly follows from (P2), so the sequence

{ρ(WWW k)}k∈N is convergent.

From the derivation of Theorem 7.1 (P1), the convergence of Algorithm 7.1 still holds if the chosen

stepsize satisfies (7.16) such that one can use a backtracking method (shown in Algorithm 7.2) to choose

η in practice. Note that Theorem 7.1 implies that the sequence generated by Algorithm 7.1 has at least

one convergent subsequence and the limit point of any convergent subsequence is a stationary point of

ρ(ΦΦΦ,GGG). Moreover, we will prove that the sequence generated by Algorithm 7.1 is a Cauchy sequence

and thus the sequence itself is convergent and converges to a stationary point of ρ(ΦΦΦ,GGG) in Algorithm 7.1.

Algorithm 7.2 Backtracking at kth Iteration
Input: Initial values: (η0,γ,α) with γ ∈ (0,1), α ∈ (0,1), and η0 the initial guess stepsize.
Output: Stepsize η and update ΦΦΦk+1.

1: η← η0.
2: ΦΦΦk+1← PSκ

(ΦΦΦk−η∇ΦΦΦ f (ΦΦΦk,GGGk)).
3: while ρ(ΦΦΦk,GGGk)−ρ(ΦΦΦk+1,GGGk)<

γ

2η
‖ΦΦΦk+1−ΦΦΦk‖2

F do
4: η← αη.
5: ΦΦΦk+1← PSκ

(ΦΦΦk−η∇ΦΦΦ f (ΦΦΦk,GGGk)).
6: end while

Theorem 7.2 (Sequence convergence). The sequence of iterates {(ΦΦΦk,GGGk)}k≥0 generated by Algorithm 7.1

with stepsize η < 1
Lc

converges to a stationary point of ρ.

Proof. We begin the proof with the definition of the Kurdyka-Lojasiewicz (KL) inequality which will be

used in the following proof [147, 149, 148].

Definition 7.4.3 (Kurdyka-Lojasiewicz (KL) inequality). Assume that σ(uuu) is a proper semi-continuous

function. Then ∃ δ > 0, α ∈ [0,1), C1 > 0 yields

|σ(uuu)−σ(uuu)|α ≤C1‖vvv‖, ∀ uuu ∈ B(uuu,δ), ∀ vvv ∈ ∂σ(uuu),

where uuu is a stationary point of σ(uuu) and B(uuu,δ) defines to a ball with uuu and δ as the center and radius.

Note that ρ(ΦΦΦ,GGG) is lower semi-continuous and satisfies the KL inequality. Theorem 7.1 reveals the

subsequential convergence of the sequence {WWW k = (ΦΦΦk,GGGk)}k. Now we show the sequence {WWW k =

(ΦΦΦk,GGGk)}k itself is convergent and hence it converges to a certain stationary point of WWW = (ΦΦΦ,GGG).

From (7.18), we know that there exists an integer n so that WWW k ∈ B(WWW ,δ), ∀ k > n, ∀δ > 0 for some

stationary point WWW ∈ C (ρ) where C (ρ) denotes a set of stationary points of ρ. By using the definition of

concave function and the concavity of h(y) = y1−α with y > 0, we have

[ρ(WWW k+1)−ρ(WWW )]1−α ≤ [ρ(WWW k)−ρ(WWW )]1−α +(1−α)
ρ(WWW k+1)−ρ(WWW k)

[ρ(WWW k)−ρ(WWW )]α
. (7.28)
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Now we show the lower and upper bound for ρ(WWW k)− ρ(WWW k+1) and [ρ(WWW k)−ρ(WWW )]α, respectively.

Following (7.16), (7.27), and the KL inequality, we get ρ(WWW k)−ρ(WWW k+1)≥C2‖WWW k+1−WWW k‖2
F with C2 =

min{
1
η
−Lc

2 ,1} and [ρ(WWW k)−ρ(WWW )]α ≤C1 ‖(DDDΦΦΦk ,DDDGGGk)‖F ≤C3‖WWW k−WWW k−1‖F with C3 =C1(2Lc +1/η).

Plugging these two inequalities into (7.28), we obtain

[ρ(WWW k)−ρ(WWW )]1−α− [ρ(WWW k+1)−ρ(WWW )]1−α ≥ (1−α)
C2‖WWW k+1−WWW k‖2

F

C3‖WWW k−WWW k−1‖F
. (7.29)

Defining C4 = (1−α)C2/C3 and summing (7.29) from k = 1 to ∞, we get

1
C4

[ρ(WWW 1)−ρ(WWW )]1−α− 1
C4

[ρ(WWW ∞)−ρ(WWW )]1−α

≥
∞

∑
k=1

‖WWW k+1−WWW k‖2
F

‖WWW k−WWW k−1‖F
+‖WWW k−WWW k−1‖F

−‖WWW k−WWW k−1‖F

a2+b2≥2ab
≥ 2

∞

∑
k=1
‖WWW k+1−WWW k‖F −

∞

∑
k=1
‖WWW k−WWW k−1‖F

=
∞

∑
k=1
‖WWW k+1−WWW k‖F −‖WWW 1−WWW 0‖F .

With the above result and the boundedness of {WWW k}k and (7.18): ∑
∞
k=1 ‖WWW k+1−WWW k‖F < ∞, we know

{WWW k}k≥0 is Cauchy [148] in a compact set and hence it is convergent.

Remark 7.1. The KL inequality is introduced to prove Theorem 7.2. We note that the KL inequality

is also used to prove the convergence of proximal alternating minimization algorithms [147, 149, 148].

Algorithm 7.1 differs from the proximal alternating minimization algorithms [147, 149, 148] in that we

update GGG (see (7.11)) by exactly minimizing the objective function rather than using proximal operators.

We believe that the proof techniques for Theorems 7.1 and 7.2 may also be useful for analyzing the

convergence of other algorithms for designing sensing matrices [102, 107, 128, 103, 104, 114].

For ξ = 0, Gξ = {IIIL}, (7.14) is equivalent to

min
ΦΦΦ

ν(ΦΦΦ) := ‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F +λ‖ΦΦΦ‖2

F +δSκ
(ΦΦΦ). (7.30)

Evidently, Algorithm 7.1 amounts to PGD, known as the iterative hard thresholding (IHT) algorithm for

compressive sensing [150]. A direct consequence of Theorems 7.1 and 7.2 is the following corollary that

establishes the convergence of PGD for (7.30).

Corollary 7.3. Let {ΦΦΦk}k≥0 be the sequence generated by the PGD method with a constant stepsize

η < 1
Lc

that ΦΦΦk+1 = PSκ
(ΦΦΦk−η∇ΦΦΦ f (ΦΦΦk, III)).

Then

(1) ν(ΦΦΦk)−ν(ΦΦΦk+1)≥
1
η
−Lc

2 ‖ΦΦΦk−ΦΦΦk+1‖2
F .

(2) the sequence {ν(ΦΦΦk)}k≥0 converges.

(3) the sequence {ΦΦΦk}k≥0 converges to a stationary point of ν.
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Remark 7.2. We note that Corollary 7.3 is valid for applying PGD to a general sparsity-constrained

problem if the corresponding objective function is Lipschitz continuous. Compared with [151, Theorem

3.1] which also provides the convergence analysis of PGD for a general sparsity-constrained problem,

Corollary 7.3 shows that the sequence generated by PGD is also convergent and converges to a stationary

point, while [151, Theorem 3.1] only showed the subsequential convergence property of PGD, i.e., the

limit point of any convergent subsequence converges to a stationary point.

We note that one can also add the sparse constraint to the entire sensing matrix rather than each row

and Algorithm 7.1 is still valid for such a constraint. However, we empirically observe that such a sensing

matrix yields slightly worse performance than the one imposing sparsity in each row. Moreover, we do

not choose to impose the sparse constraint in each column because M is much smaller than N and such a

constraint reduces the freedom of optimizing ΦΦΦ. For example, if M = 10 and N = 100 and the sensing

matrix can only have 10% non-zeros, then each column will have one non-zero if we impose the sparsity

in each column, whereas each row can have ten non-zeros by imposing the sparsity in each row, which

provides more freedom to optimize the sensing matrix.

7.5 Numerical Experiments

A series of experiments on synthetic data and real images is carried out in this section to study the

performance of the proposed method for designing structured sparse sensing matrix. Moreover, we also

compare our method with previous methods for designing sensing matrices [138, 103, 106]. Following,

we list all CS systems that are tested in this chapter.

CSrandn: ΨΨΨ + A dense random matrix.
CSMT : ΨΨΨ + Sensing matrix [106].
CSMT−ET F : ΨΨΨ + Sensing matrix [106].
CSLZYCB: ΨΨΨ + Sensing matrix [103].
CSbispar: ΨΨΨ + A binary sparse sensing matrix [138].
CSsparse−A: ΨΨΨ + Output of Algorithm 7.1 with ξ = 0 (i.e., Gξ = {IIIL}) and AAA = DCT.
CSsparse: ΨΨΨ + Output of Algorithm 7.1 with ξ = 0 (i.e., Gξ = {IIIL}) and AAA = IIIN .
CSsparse−ET F : ΨΨΨ + Output of Algorithm 7.1 with ξ = µ and AAA = IIIN .

7.5.1 Synthetic Data

A dictionary ΨΨΨ ∈ RN×L with normally distributed entries and a random matrix ΦΦΦ ∈ RM×N are generated

for CSrandn. The training and testing data are generated as follows: for a given dictionary ΨΨΨ, we first

generate a set of I K-sparse vectors {θθθi ∈ RL}I
i=1 where the index of the non-zeros in θθθi obeys a normal

distribution and then obtain the sparse signals {xxxi}I
i=1 through

xxxi = ΨΨΨθθθi + eeei, (7.31)

where eeei refers to the Gaussian noise with mean zero and variance σ2. Denote by SNR the signal-to-noise

ratio (in dB) of the signals in (7.31). The performance of a CS system is evaluated through the mean
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Figure 7.3: Examination of the convergence of Algorithm 7.1. (a) The change of f (ΦΦΦk,GGGk); (b) The
change of ‖ΦΦΦk+1−ΦΦΦk‖F (blue line) and ‖GGGk+1−GGGk‖F (red line). The parameters are M = 25,N =
60,L = 80,λ = 0.25, and κ = 20.

squared error (MSE)

MSE ,
1

N× I

I

∑
i=1
‖xxxi− x̂xxi‖2

2, (7.32)

where x̂xxi = ΨΨΨθ̂θθi is the recovered signal and θ̂θθi is obtained through

θ̂θθi = argminθθθi
||ΦΦΦxxxi−ΦΦΦΨΨΨθθθi||22 s.t. ||θθθi||0 ≤ K.

Now we examine the convergence of Algorithm 7.1. The generated dictionary ΨΨΨ and AAA = IIIN are

chosen for Algorithm 7.1 and also adopted in the following synthetic experiments. From Figure 7.3, we see

f (ΦΦΦk,GGGk) decays steadily and ‖ΦΦΦk+1−ΦΦΦk‖F and ‖GGGk+1−GGGk‖F tend to 0 linearly meeting the theoretical

analysis. Next we study the choice of λ which is used to balance the importance of mutual coherence

and the robustness of SRE. As seen from Figure 7.4, the optimal λ for which the corresponding sensing

matrix yields the highest recovery accuracy becomes large for a lower SNR, showing the importance of

emphasizing robustness with respect to noise.

In Figure 7.5, we compare the performance of each CS system with varying SNR. From Figure 7.5,

we see that CSMT , CSMT−ET F , CSsparse, and CSsparse−ET F outperform other CS systems for SNR < 25dB.

Comparing CSMT−ET F and CSsparse−ET F with CSMT and CSsparse for a relatively high SNR, we observe

that setting ξ = µ is more attractive than ξ = 0. Notice that the performance of CSLY ZCB deteriorates fast

when we reduce SNR implying that CSLY ZCB is not robust with respect to SRE. It is interesting to note

that CSsparse and CSsparse−ET F yield performance that is comparable to that of CSMT and CSMT−ET F and

are much better than CSrandn and CSbispar, suggesting that using a sparse sensing matrix does not sacrifice

the performance. Finally, we study the change in signal recovery accuracy for varying M and K. From

Figures 7.6 and 7.7, we observe that the sparse sensing matrix works similarly to the dense one for varying

M and K.
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Figure 7.4: Optimal λ with CSsparse for varying SNR. The parameters are M = 25,N = 60,L = 80,K =
4, I = 2000, and κ = 20.
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7.5.2 Real Images

In this subsection, we study the performance of the aforementioned CS systems for the reconstruction

of real images with two different sizes of dictionaries, ΨΨΨ ∈ R64×100 (low dimensional dictionary) and

ΨΨΨ ∈ R256×800 (high dimensional dictionary). The low dimensional dictionary ΨΨΨ is learnt using the KSVD

algorithm [17] with a set of 8×8 non-overlapping patches by extracting randomly 15 patches from each of

400 images in the LabelMe [123] training dataset. The extracted 8×8 patches are re-arranged as a vector,

and eventually we obtain a total of 64×6000 signals for training. Compared with the low dimensional

dictionary, the high dimensional dictionary gives more freedom to learn, such that we extract more patches

from the LabelMe training dataset resulting in 106 signals. To address such a large training dataset, we use

the online dictionary learning algorithm [109] to learn the high dimensional dictionary. The reconstruction

accuracy of each CS system for real images is evaluated by Peak Signal to Noise Ratio (PSNR),

PSNR , 10× log10
[
(2r−1)2

MSE

]
(dB),

where r = 8 and MSE is defined in (7.32).

In Figure 7.8, we show the comparison of PSNR for different κ (the number of non-zeros in each

row of the sparse sensing matrix) on testing image “Lena”, and the values of PSNR for other testing

images (i.e., Couple, Barbara, Child, Plane, and Man) in Tables 7.1 and 7.2. The reconstructed testing

image “Couple” is displayed in Figure 7.10 for showing the visual effect. From Figure 7.8 and Tables 7.1

and 7.2, we observe that even for a small κ, CSsparse−A (AAA = DCT) has better performance than CSsparse

(AAA = IIIN) implying the effectiveness of using the auxiliary DCT matrix to improve the reconstruction

accuracy. It is not surprising to note that CSLZYCB yields very low PSNR for real image experiments,

consistent with Figure 7.5, indicating that CSLZYCB is not robust with respect to eee 6= 0. As expected,

CSsparse−A and CSsparse yield higher PSNR for a larger κ. It is interesting to note that CSsparse−A is only

0.53dB inferior to CSMT even for a small κ (e.g., κ = 10) and is still more than 3dB better than CSrandn

which is dense. We note that the difference between CSsparse−A and CSMT is almost negligible (0.15

dB) for κ≥ 30 meeting our expectation that one can design a sparse sensing matrix instead of a dense
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Figure 7.9: The original testing image “Couple”.

one with comparable performance, so that we can improve the efficiency of acquisition. Comparing the

results in Tables 7.1 and 7.2, we observe that one can obtain a higher PSNR by using a high dimensional

dictionary. It is interesting to note that the proposed sparse sensing matrix becomes more attractive for a

high dimensional dictionary because the reduced acquisition costs become more significant for such high

dimensional signals.

Since the patch-based image processing techniques will introduce the blockiness artifacts, we suggest

using the deblocking techniques in this part as a post-processing step to reduce such artifacts. To this end,

we additionally call the BM3D denoising algorithm for the reconstructed images [20]. From Tables 7.1

and 7.2 and Figure 7.10, we observe that such a post-processing step not only improves the visual effect,

but also increases PSNR for each CS system.

7.6 Conclusion

A new framework for designing a structured sparse sensing matrix which is robust with respect to the

sparse representation error and can be used to efficiently acquire the signals of interest is introduced in

this chapter. An alternating minimization algorithm with analysis of convergence is proposed to solve

the optimization problem. Numerical experiments show the promising performance of the proposed
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Table 7.1: Comparison of PSNR (dB) for six testing images with M = 20, N = 64, L = 100, K = 4, λ =
1.4 for different κ. First row: PSNR before post-processing; Second row: the increased PSNR after
post-processing.
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Table 7.2: Similarly to Table 7.1, but with M = 80, N = 256, L = 800, K = 16, λ = 0.5.
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(a) CSrandn: 27.40 (b) CSbispar: 27.33 (c) CSsparse: 29.69 (d) CSsparse−A: 30.47 (e) CSMT : 30.90

(f) +0.51 (g) +0.50 (h) +0.42 (i) +0.37 (j) +0.23

Figure 7.10: Comparison of PSNR (dB) of reconstructed ”Couple” images for each CS system with
M = 80, N = 256, L = 800, K = 16, λ = 0.5,κ = 10. Upper: PSNR before post-processing; Bottom:
Improved PSNR after post-processing.

structured sparse sensing matrix in terms of signal recovery accuracy on synthetic data and real images.

As shown in Section 7.5, the use of the base matrix AAA improves the performance of the sparse sensing

matrix, especially for the case that the number of non-zeros in Φ̄ΦΦ is very small. Moreover, the use of a

base matrix AAA may become more attractive if it also has some freedom for optimizing so that it is possible

to optimize the base matrix AAA and the sparse matrix Φ̄ΦΦ simultaneously. One possible direction is to use

a series of Givens rotation matrices as AAA which provides freedom to optimize and can be implemented

efficiently. Moreover, adapting the optimized structured sparse sensing matrix into analog-to-digital

conversion systems based on compressive sensing [152, 153] would be another interesting direction for

the future. To this end, it is important to develop a quantized sparse sensing matrix. We finally note that

it remains an open problem to certify certain properties (e.g., RIP) for the optimized sensing matrices

[102, 107, 128, 103, 105, 104, 108, 114, 106, 129, 120] which empirically outperforms a random one that

satisfies the RIP. Works in these directions are ongoing.
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Chapter 8

Conclusion and Future Work

In this dissertation, we have studied numerical optimization and multigrid computational methods, together

with applications. This research can be divided into three parts, with contributions summarized as follows:

1. Efficient Solvers for Regularization by Denoising. We begin with the application of vector

extrapolation (VE) towards accelerating existing solvers for Regularization by Denoising (RED).

VE can significantly reduce the number of iterations required for convergence, and the additional

computation at each step is small, so we obtain the acceleration almost free. In further work, we

introduce a general scheme called weighted proximal methods (WPMs) for RED and show that two

previous methods, namely, the fixed point and accelerated proximal method, are two special cases

of WPMs. By choosing a slightly more elaborate weighting, the resulting algorithm converges

faster than all previous solvers for RED.

2. Acceleration Schemes. We adapt Nesterov’s scheme to accelerating iterative methods for linear

problems. When the iteration matrix of the iterative method has only real eigenvalues, we propose

an explicit formula to optimally calculate the parameter of Nesterov’s scheme. Moreover, we

study the robustness of Nesterov’s scheme for the case where the iteration matrix also has complex

eigenvalues. In subsequent work, we merge multigrid (MG) methods with sequential subspace

optimization (SESOP) yielding a hybrid scheme for acceleration, dubbed SESOP-MG, which

inherits the merits of SESOP and multigrid methods. The asymptotic convergence factor of the

two-grid version of SESOP-MG is studied for quadratic problems with three search directions,

namely, preconditioned gradient, one history (previous iterate), and coarse-grid correction. We

propose a fixed-stepsize version for quadratic problems to avoid the calculation of stepsizes at each

iteration and study two heuristic ways to estimate the optimal fixed stepsizes cheaply.

3. The Design of Robust Compressive Sensing Systems. We introduce a new model to learn the

sensing matrix and sparsifying dictionary simultaneously for compressive sensing (CS) systems.

The resulting CS system is robust with respect to the case where the signals of interest have a sparse

representation error. Moreover, we also propose an efficient online algorithm with convergence

analysis to solve the formulated model. Our second work in this part considers the efficiency of

acquiring a signal. We propose a structured sensing matrix consisting of a sparse matrix and a

prescribed dense matrix which allows fast implementation. Moreover, we introduce a numerical

method with the guarantee of global sequence convergence to solve the problem.
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8.1 Future Work

Having shown the capabilities of some computational methods for applications in signal processing

and computational imaging, we next list possible directions for future research, from both practical and

theoretical aspects. Some of these are a direct extension of the work reported in this thesis.

• We have studied here the adaption of Nesterov’s scheme to acceleration of iterative methods for

linear problems. A natural question is how to adapt these ideas to nonlinear problems. Moreover,

even for linear problems, we do not yet know how to accelerate an iterative method whose iteration

matrix contains complex eigenvalues beyond the case we discussed in Chapter 4. Another natural

research direction is an attempt to extend our results to the case of iteration-dependent coefficients

(as in Chebyshev acceleration).

• In nonlinear MG methods, we use the full approximation storage (FAS) scheme, which uses

only first-order information. The merits of using second-order information in nonlinear MG

were introduced in [154]. However, this approach has not been applied broadly, due to technical

challenges in making it robust and efficient. Hence, developing a workable scheme that involves

high-order information in nonlinear MG methods is an interesting future direction. One may

consider the convex problems as candidate problems first that we may be able to use the well-

developed theoretical results of convex optimization to understand the essential difficulties. One

interesting direction may be adapting simple approximations to the Hessian matrix, as done in

WPM’s in the thesis.

• Inverse problems can be modelled as the following composite minimization problems:

min
xxx

F(xxx)︸︷︷︸
Data Fidelity

+R(xxx)︸︷︷︸
Prior

, (8.1)

where F(xxx) = ∑
L
`=1 f`(xxx,yyy`) with yyy` the `th measurement and L≥ 1 the number of measurements.

For many applications [155, 156], the evaluation of the gradient of f`(xxx,yyy`) is expensive, which

is similar to the situation in RED when we evaluate the gradient of the prior part. Moreover, L is

typically large and R(xxx) is nonsmooth, e.g., total variation regularization. Our plan is to extend the

weighted proximal methods for such a class of problems. However, we have to address two main

issues: (i) find a way to estimate weighting online because of large L; (ii) address the difficulty of

the nonsmooth prior. In this direction, some preliminary results of our ongoing work already show

that such an extension is promising.

• For many nonlinear inverse problems [157, 155, 156], the optimization problems formulated in

(8.1) are nonconvex and there exist many local minima which pose difficulties for reconstructing the

signals of interest. Due to the rapid developments of theoretical research in nonconvex optimization

community, it would be interesting to understand the difficulties of the reconstruction in nonlinear

inverse problems and study the possibility of developing efficient methods with theoretical guarantee

from the optimization viewpoint.
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