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Computational methods (CMs) naturally find applications in all fields of engineering and sciences.
With the tremendous growth in computing power over the past decades, researchers can now build
more accurate models to better understand the real world. These models often exhibit nonlinear-
ity, nonconvexity, and huge-scale characteristics, requiring efficient CMs to save time and energy.
My research interests lie in numerical optimization and multigrid computational methods. My
research goal is to develop efficient CMs and software for scientific computing (SC), machine
learning (ML), signal processing (SP), and computational imaging (CI).
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Figure 1: (a-b) Principles of mutigrid and optical diffraction tomography; (c) My research roadmap.

Completed Research
Acceleration methods strive to boost computational efficiency, overcome obstacles in large-scale
problems, real-time applications, and resource-limited settings, ultimately saving resources and
enabling practical solutions to complex issues in diverse domains [13]. In my doctoral and post-
doctoral research, I developed several impactful works on acceleration methods and studied effi-
cient computational techniques for computational imaging (CI) [1–7]. Compressive sensing (CS)
enables the recovery of signals from a small number of measurements, revolutionizing data ac-
quisition and compression [14]. During my doctoral research, I made noteworthy contributions to
optimizing CS systems, aiming to improve signal recovery accuracy and sampling efficiency by
designing effective sampling strategies and sparse dictionaries [8–11].

Acceleration Methods
Plain (unaccelerated) iterative methods (PIMs) can be expedited by leveraging previous iterates
with minimal computation [17, 18]. Nesterov’s scheme (NS) is widely employed to accelerate
various PIMs [19–21]. However, adapting NS for abstract PIMs remains an open question, and the
development of a universal acceleration scheme for hierarchical problems is still understudied.
Adapting Nesterov’s scheme [1]. Iterative solutions are often required in scientific computing for
systems of the formAx= f , whereA is a sparse, large-scale, and ill-conditioned matrix [15, 22].
Compared with classic Krylov subspace acceleration methods, NS (defined at the kth iteration as
xk+1 =B(uk), uk+1 = (1+ck)xk+1−ckxk, whereB denotes some PIM) requires more iterations
but has the advantages of straightforward implementation, reduced memory requirements, and sim-
ilar computational costs as PIMs. My work [1] adapted NS to accelerate PIMs for Ax = f and
sought a closed-form solution for the optimal ck. I also derived the asymptotic convergence factor
(ACF) and studied the robustness of NS for certainB with complex eigenvalues.
Merging multigrid optimization with SESOP [2]. Multigrid methods (MGMs) [22, 23] are ef-
ficient solutions for solving elliptic partial differential equations (PDEs) and hierarchical prob-
lems, leveraging hierarchical grids and multiple scales. Fig. 1(a) presents the hierarchical grids
of MGMs. However, the design of efficient MGMs presents a challenge, leading to the frequent
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combination of MGMs with acceleration techniques [24]. Combining acceleration with imperfect
coarse grid correction (CGC) also poses challenges. SESOP is a framework that addresses large-
scale unconstrained minimization problems by performing sequential optimization over affine sub-
spaces (Mk) formed by the current and past directions [25]. My work [2] integrated MGMs with
SESOP (termed SESOP-MG) to accelerate MGMs while considering imperfect CGC. I also ex-
amined the ACF of SESOP-MG in its two-grid version and estimated the acceleration using the
h-ellipticity measure [26]. For linear problems, I incorporated three directions (the preconditioned
gradient, history, and CGC) in Mk and derived optimal fixed stepsizes for these directions.

Acceleration, Second-order Methods, and Multigrid in Imaging Sciences
Inverse problems (IPs) find diverse applications in engineering and sciences, enabling the estima-
tion of parameters from indirect measurements. However, the majority of IPs in numerous imaging
applications are highly ill-posed, large-scale, and nonlinear, resulting in complex optimization
problems that require highly efficient and scalable numerical solvers.
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Figure 2: (a-b) Performance on the 3D real data (yeast cell); (c) Performance on a disk sample.

Acceleration in regularization by denoising (RED) [3, 4]. RED [27] is an attractive framework
for solving IPs by incorporating state-of-the-art denoisers as priors. A drawback of this approach is
that the high computation of denoisers dominates the computation time. My work [3] used vector
extrapolation methods [28] to accelerate the algorithms presented in [27]. That was done by solving
an additional very small-scale quadratic minimization problem every few iterations with almost
no cost, reducing the frequency of executing denoisers. My subsequent work [4] explored the
utilization of weighted proximal methods (WPMs) in RED, incorporating second-order information
and achieving an approximate 10-fold speedup compared with the best algorithm proposed in [27].
Second-order methods in CS magnetic resonance imaging (MRI) and optical diffraction to-
mography (ODT) [5, 6]. IPs are often modeled as large-scale composite minimization problems
(minx f (x)+ g(x)), favoring the use of first-order methods (FOMs) [29]. Second-order methods
(SOMs) are faster than FOMs in terms of iterations but receive limited attention in IPs due to
the need for solving proxWg (u) = argminx 1

2‖x−u‖
2
W + g(x),W � 0 at each iteration, unlike

FOMs where proxIg(u) often has a closed-form solution. CS MRI allows the reconstruction of
complex MRI images (x∈CN) from undersampled data, offering potential for accelerated imaging
[30]. My work [5] introduced a complex quasi-Newton proximal method (CQNPM) for CS MRI
reconstruction when wavelet and total variation regularizers are both used and proposed efficient
approaches to solve proxWg (u). CQNPM outperforms FOMs in terms of iterations and CPU time.

Three-dimensional ODT (Fig. 1(b)) [31] is a noninvasive imaging modality for recovering the
refractive index of an object from indirect measurements. ODT reconstruction involves minimizing
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minx∈C ∑
M
m=1 fm(x)+g(x), M� 1, which is challenging due to the nonlinearity and nonconvexity

of { fm}m≥1, the high computation of {∇ fm}m≥1, the large size of M, the nonsmoothness of g(x),
and the constraint. My work [6] proposed a mini-batch quasi-Newton proximal method (BQNPM)
such that the computation at each iteration is independent of M and developed an efficient approach
to solve the related proxWg (u) = argminx∈C

1
2‖x−u‖

2
W +g(x). BQNPM outperforms stochastic

FOMs in terms of iterations and GPU time, see Fig. 2(a) and Fig. 2(b).
Multigrid in diffraction tomography (DT) [7]. CI with accurate nonlinear physical models at-
tracts interest for high-quality reconstructions. The Lippmann-Schwinger equation (LSE) forward
model [31] enables high-contrast object recovery in DT. However, the numerical solvers for LSE
with high-contrast object are inefficient, hindering efficient reconstruction. My work [7] suggested
using the Helmholtz equation as the forward model, which is as accurate as LSE. We also intro-
duced an efficient and scalable geometric multigrid solver for the Helmholtz equation, accelerating
high-contrast object recovery by efficiently solving the Helmholtz equation, see Fig. 2(c).

Optimizing Compressive Sensing Systems
Compressive sensing (CS) allows for the recovery of a sparse signal x∈RN :=Dθ+e,D ∈RN×L,
‖θ‖0� L from incomplete measurements y ∈RM :=Φx (M�N) [14]. Under the assumption that
e= 0, Elad [32] showed that refining Φ can enhance recovery accuracy. However, practical signals
with e 6= 0 pose challenges for optimizing Φ. In my work [8], I proposed a new framework to refine
Φ by jointly minimizing the coherence of ΦD and ‖Φe‖2

2, which is robust to e 6= 0. Furthermore,
my subsequent study [8] improved the efficiency of refining Φ by eliminating the requirement
of prior knowledge e. In later research [10], I suggested refining Φ and D simultaneously for
high-dimensional signals by using an online algorithm. Lastly, in my work [11], I considered
the sampling efficiency by optimizing a structured Φ = Φ̄Ψ where Φ̄ is extremely sparse and
Ψ possesses fast transform properties (e.g., wavelets) that require fewer arithmetic operations to
sample signals. My contributions in this area offer new perspectives on optimizing MRI sampling
trajectories, opening up avenues for future research.

Future Research Plans
Accurate models and efficient algorithms are essential for managing the vast amount of data gen-
erated in engineering and sciences. My future work will concentrate on designing accurate and
efficient models and algorithms to tackle challenges in areas such as SC, SP, ML, and computa-
tional imaging (CI). My complete research roadmap is summarized in Fig. 1(c).
Optimization with multigrid and computational imaging. Optimization is fundamental to max-
imizing efficiency and enhancing decision-making in various fields. Compared with first-order
methods, high-order methods offer accelerated convergence but face various practical issues, such
as increased computational complexity, global convergence, and limitation to nonsmooth problems.
I plan to study the application of high-order methods to various scenarios, delve into nonsmooth
and nonconvex optimization, and explore their theoretical underpinning.
• High-order nonlinear multigrid. The full approximation storage (FAS) scheme, widely used in

nonlinear multigrid methods (MGMs), leverages only first-order information [22]. While the
benefits of using second-order information have been introduced in [33], this approach has not
been broadly applied due to the technical challenges in making it robust and efficient. My plan
is to explore ways to use high-order information in nonlinear MGMs under convex optimization
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frameworks [34, 35] and to study the convergence of high-order nonlinear MGMs. The studies
in this direction can potentially revolutionize the solution of nonlinear PDEs using MGMs.
• Nonsmooth and nonconvex optimization for computational imaging. Computational imaging

(CI) integrates imaging techniques and computational methods to enhance image acquisition,
processing, and analysis, thereby improving image quality and advancing capabilities in vari-
ous domains such as microscopy imaging [36], medical imaging [37], and geophysics [38] etc.
The core computational task in CI is solving (nonlinear) inverse problems, many of which are
nonconvex (e.g., ODT [6]), nonsmooth (e.g., intensity ODT [38]), and computationally expen-
sive (e.g., large-scale 3D images [31]). My goal is to deepen our understanding of these inverse
problems by establishing recovery guarantees, thereby enabling the development of new imaging
systems and efficient optimization algorithms, as exemplified in my work [4–6]. I am enthusi-
astic about collaborating across domains, utilizing nonsmooth and nonconvex optimization to
solve large-scale problems, and contributing to open software packages, as demonstrated in my
previous research. Moreover, this line of study holds potential to contribute to the theoretical
understanding of training deep neural networks, a complex nonsmooth and nonconvex problem.
• Adapting Nesterov’s scheme to nonlinear problems. We have seen the merits of using Nesterov’s

scheme (NS) to accelerate PIMs for linear problems [1]. However, adapting NS to nonlinear
problems remains an unexplored area. I plan to study efficient and practical ways to adapt
NS to accelerate abstract solvers for nonlinear problems, which will provide new insights for
acceleration methods.

Efficient deep neural networks (DNNs). DNNs have been prominent in AI since 2012 [42].
Given the large size of modern DNNs, there is a necessity for efficient DNNs to achieve faster, cost-
effective, and eco-friendly AI. I plan to focus on designing small and efficient physics-informed
NNs for diverse applications by using domain knowledge. Quantizing parameters with fewer bits
can compress NNs and save computation [43]. Matrix-vector multiplication (MCM), a fundamental
building block in DNNs, can have infinite realizations that impact quantization error (QE) [44].
My second aim is to study MCM realizations to minimize the effects of QE, thereby reducing bit
usage while preserving performance, as in my prior work on all-pass digital filter structures [12].
Furthermore, I intend to develop theoretical frameworks to guide the discovery of realizations for
different NNs. I am also eager to collaborate with hardware specialists to apply our findings to real
edge devices, smartphones, and embedded systems.
ASL from theory to practice. Arterial spin labeling (ASL) [39] is a non-invasive MRI technique
that measures cerebral blood flow by magnetically labeling arterial blood, providing valuable in-
formation about brain perfusion. However, ASL techniques face challenges such as low SNR, and
are susceptible to confounding factors like pulsatility, motion, and variations in bolus arrival time
(BAT). As a continuation of my postdoctoral research, I plan to study the combination of velocity-
selective inversion pulses with MR fingerprinting (MRF) [40]. This approach allows us to estimate
multiple hemodynamic parameters (MHPs) in a single scan and reduces the signal loss caused by
BAT. Moreover, I aim to globally optimize the ASL-MRF scan, acquisition, reconstruction, and pa-
rameter estimation processes, which can shorten scan time while still accurately obtaining MHPs.
However, the whole optimization is nonlinear, nonconvex, and nonsmooth, which requires efficient
and effective computational methods. I also intend to collaborate with neuroscientists and obstetri-
cians to apply ASL techniques to the study of Parkinson’s disease and placental imaging. I believe
that the non-invasive, quantitative, repeatable measurements, and cost-effective properties of ASL
will make it a popular technique for early diagnosis of diseases in the brain and fetus.
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